Three-dimensional path planning for unmanned aerial vehicle based on linear programming

Robotica ◽  
2011 ◽  
Vol 30 (5) ◽  
pp. 773-781 ◽  
Author(s):  
Yang Chen ◽  
Jianda Han ◽  
Xingang Zhao

SUMMARYIn this paper, an approach based on linear programming (LP) is proposed for path planning in three-dimensional space, in which an aerial vehicle is requested to pursue a target while avoiding static or dynamic obstacles. This problem is very meaningful for many aerial robots, such as unmanned aerial vehicles. First, the tasks of target-pursuit and obstacle-avoidance are modelled with linear constraints in relative coordination according to LP formulation. Then, two weighted cost functions, representing the optimal velocity resolution, are integrated into the final objective function. This resolution, defined to achieve the optimal velocity, deals with the optimization of a pair of orthogonal vectors. Some constraints, such as boundaries of the vehicle velocity, acceleration, sensor range, and flying height, are considered in this method. A number of simulations, under static and dynamic environments, are carried out to validate the performance of generating optimal trajectory in real time. Compared with ant colony optimization algorithm and genetic algorithm, our method has less parameters to tune and can achieve better performance in real-time application.

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 20100-20116
Author(s):  
Xianjin Zhou ◽  
Fei Gao ◽  
Xi Fang ◽  
Zehong Lan

Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 144
Author(s):  
Yong Shen ◽  
Yunlou Zhu ◽  
Hongwei Kang ◽  
Xingping Sun ◽  
Qingyi Chen ◽  
...  

Evolutionary Algorithms (EAs) based Unmanned Aerial Vehicle (UAV) path planners have been extensively studied for their effectiveness and high concurrency. However, when there are many obstacles, the path can easily violate constraints during the evolutionary process. Even if a single waypoint causes a few constraint violations, the algorithm will discard these solutions. In this paper, path planning is constructed as a multi-objective optimization problem with constraints in a three-dimensional terrain scenario. To solve this problem in an effective way, this paper proposes an evolutionary algorithm based on multi-level constraint processing (ANSGA-III-PPS) to plan the shortest collision-free flight path of a gliding UAV. The proposed algorithm uses an adaptive constraint processing mechanism to improve different path constraints in a three-dimensional environment and uses an improved adaptive non-dominated sorting genetic algorithm (third edition—ANSGA-III) to enhance the algorithm’s path planning ability in a complex environment. The experimental results show that compared with the other four algorithms, ANSGA-III-PPS achieves the best solution performance. This not only validates the effect of the proposed algorithm, but also enriches and improves the research results of UAV path planning.


Author(s):  
Young-Sam Kim ◽  
Min-Jea Tahk

Landing is the most dangerous phase of the entire flight phases. If the total loss of thrust occurs during flight, a powered aircraft converts to a glider, which can use kinetic and potential energy only. For this reason, a proper scheme is needed for safe landing in cases of the total loss of thrust. This paper presents three-dimensional unpowered auto-landing guidance based on trajectory generation, expanding the concept of the energy-to-range ratio. We develop the terminal velocity estimation method for a horizontal plane applied to three-dimensional space; this method is based on the previously suggested terminal velocity estimation method for a vertical plane. Then, we show trajectory generation for landing guidance combining vertical with horizontal waypoints. The proposed auto-landing guidance with trajectory generation is evaluated by numerical simulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yongqiang Qi ◽  
Shuai Li ◽  
Yi Ke

In this paper, a three-dimensional path planning problem of an unmanned aerial vehicle under constant thrust is studied based on the artificial fluid method. The effect of obstacles on the original fluid field is quantified by the perturbation matrix, the streamlines can be regarded as the planned path for the unmanned aerial vehicle, and the tangential vector and the disturbance matrix of the artificial fluid method are improved. In particular, this paper addresses a novel algorithm of constant thrust fitting which is proposed through the impulse compensation, and then the constant thrust switching control scheme based on the isochronous interpolation method is given. It is proved that the planned path can avoid all obstacles smoothly and swiftly and reach the destination eventually. Simulation results demonstrate the effectiveness of this method.


Robotica ◽  
2001 ◽  
Vol 19 (2) ◽  
pp. 125-135 ◽  
Author(s):  
M. Williams ◽  
D.I. Jones

This paper describes a path planning method for a small autonomous aerial vehicle to be used for inspecting overhead electricity power lines. A computational algorithm is described which converts a standard three dimensional array representation of one or more obstacles in the vehicle's environment into an octree and a connectivity graph. This achieves a significant reduction in computer memory usage and an increase in execution speed when the graph is searched. Path planning is based on a three-dimensional extension of the distance transform. Test results demonstrate rapid and effective operation of the planner within different workspaces.


Sign in / Sign up

Export Citation Format

Share Document