A new computation method for the force-closure workspace of cable-driven parallel manipulators

Robotica ◽  
2014 ◽  
Vol 33 (3) ◽  
pp. 537-547 ◽  
Author(s):  
Bo Ouyang ◽  
Wei-Wei Shang

SUMMARYFor cable-driven parallel manipulators (CDPMs), it is known that maintaining positive cable tension is critical in constraining the moving platform. Hence, the force-closure workspace of CDPMs represents a set of poses where the cable tensions can balance arbitrary external wrench applied on the moving platform, proposed by researchers. A new computation method for the force-closure workspace of CDPMs is developed in this paper, and the new method is realized by calculating the null space of the structure matrix and solving the linear matrix inequalities. The detailed calculation procedures of the force-closure workspace for the incompletely restrained, completely restrained, and redundantly restrained CDPMs are given, respectively, and the advantages of the new method are analyzed according to the time complexity. The simulation experiments of the force-closure workspace computation are implemented on a six-degree of freedom (6-DOF) CDPM with eight cables, and then the superiority of the new method over the existing algorithm is studied.

2004 ◽  
Vol 126 (6) ◽  
pp. 959-968 ◽  
Author(s):  
Mahir Hassan ◽  
Leila Notash

In this study, the effect of active joint failure on the mobility, velocity, and static force of parallel robot manipulators is investigated. Two catastrophic active joint failure types are considered: joint jam and actuator force loss. To investigate the effect of failure on mobility, the Gru¨bler’s mobility equation is modified to take into account the kinematic constraints imposed by various branches in the manipulator. In the case of joint jam, the manipulator loses the ability to move and apply force in a specific portion of its task space; while in the case of actuator force loss, the manipulator gains an unconstrained motion in a specific portion of the task space in which an externally applied force cannot be resisted by the actuator forces. The effect of joint jam and actuator force loss on the velocity and on the force capabilities of parallel manipulators is investigated by examining the change in the Jacobian matrix, its inverse, and transposes. It is shown that the reduced velocity and force capabilities after joint jam and loss of actuator force could be determined using the null space vectors of the transpose of the Jacobian matrix and its inverse. Computer simulation is conducted to demonstrate the application of the developed methodology in determining the post-failure trajectory of a 3-3 six-degree-of-freedom Stewart-Gough manipulator, when encountering active joint jam and actuator force loss.


Author(s):  
Bin Zhang ◽  
Wei-Wei Shang ◽  
Shuang Cong ◽  
Yi Liu

To improve the mechanical structure of cable-driven parallel manipulators (CDPMs), the size of the moving platform is optimized based on the stiffness characteristics. First, the relationship between the stability and the static stiffness of CDPMs is analyzed, and a way of judging whether CDPMs are stable at a given pose is proposed. Therefore, the space formed by all stable poses is defined as the stable workspace. Second, the effects of two different shapes of the moving platform in different sizes on the stable workspace are investigated numerically. Furthermore, by maximizing the stable workspace, the size of the moving platform is optimized using the grouped coordinate descent method. Finally, the simulation experiments are implemented on a six-DOF spatial CDPM with eight cables. The simulation results indicate that the shape and size of the moving platform both have effects on the stable workspace, and the volume of the stable workspace can be enlarged by optimizing the size of the moving platform in the two different shapes.


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Venus Garg ◽  
Juan A. Carretero ◽  
Scott B. Nokleby

A new method for obtaining the force and moment workspaces of spatial parallel manipulators (PMs) is presented. Force and moment workspaces are regions within which a manipulator can sustain/apply at least a certain value of force or moment in all directions. Here, the force and moment workspaces are found using a method, which explicitly sets the largest possible number of actuators to their maximum limits ensuring that the manipulator is performing at its best possible wrench capabilities. Two cases for obtaining these workspaces are used. The first gives the applicable/sustainable force with a prescribed moment whereas the second one gives the applicable/sustainable moment with a prescribed force. For illustration purposes, the method is applied to a six-degree-of-freedom (DOF) redundantly-actuated spatial PM, the 3-RRṞS. The results are represented graphically as the boundaries of the workspace in the three-dimensional Cartesian space. These workspaces can be used as a powerful tool for path/task planning and PM design.


2019 ◽  
Vol 16 (3) ◽  
pp. 172988141985891
Author(s):  
Zhi-Hao Kang ◽  
Ching-An Cheng ◽  
Han-Pang Huang

In this article, we analyze the singularities of six-degree-of-freedom anthropomorphic manipulators and design a singularity handling algorithm that can smoothly go through singular regions. We show that the boundary singularity and the internal singularity points of six-degree-of-freedom anthropomorphic manipulators can be identified through a singularity analysis, although they do not possess the nice kinematic decoupling property as six-degree-of-freedom industrial manipulators. Based on this discovery, our algorithm adopts a switching strategy to handle these two cases. For boundary singularities, the algorithm modifies the control input to fold the manipulator back from the singular straight posture. For internal singularities, the algorithm controls the manipulator with null space motion. We show that this strategy allows a manipulator to move within singular regions and back to non-singular regions, so the usable workspace is increased compared with conventional approaches. The proposed algorithm is validated in simulations and real-time control experiments.


2005 ◽  
Vol 29 (4) ◽  
pp. 541-552 ◽  
Author(s):  
Marc Gouttefarde ◽  
Clément M. Gosselin

The wrench-closure workspace (WCW) of six-degree-of-freedom (DOF) parallel cable-driven mechanisms is defined as the set of poses of the moving platform of the mechanism for which any external wrench can be balanced by tension forces in the cables. This workspace is fundamental in order to analyze and design parallel cable-driven mechanisms. This paper deals with the class of six-DOF mechanisms driven by seven cables. Two theorems, which provide efficient means to test whether a given pose of the moving platform belongs to the WCW, are proposed. One of these two theorems reveals the nature of the boundary of the constant-orientation cross sections of the WCW. Moreover, some of the possible applications of these theorems are discussed and illustrated.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Stéphane Caro ◽  
Nicolas Binaud ◽  
Philippe Wenger

This paper deals with the sensitivity analysis of 3-RPR planar parallel manipulators (PPMs). First, the sensitivity coefficients of the pose of the manipulator moving platform to variations in the geometric parameters and in the actuated variables are expressed algebraically. Moreover, two aggregate sensitivity indices are determined, one related to the orientation of the manipulator moving platform and another one related to its position. Then, a methodology is proposed to compare 3-RPR PPMs with regard to their dexterity, workspace size and sensitivity. Finally, the sensitivity of a 3-RPR PPM is analyzed in detail and four 3-RPR PPMs are compared as illustrative examples.


Author(s):  
C. Gosselin

Abstract This paper presents an algorithm for the determination of the workspace of parallel manipulators. The method described here, which is based on geometrical properties of the workspace, leads to a simple graphical representation of the regions of the three-dimensional Cartesian space that are attainable by the manipulator with a given orientation of the platform. Moreover, the volume of the workspace can be easily computed by performing an integration on its boundary, which is obtained from the algorithm. Examples are included to illustrate the application of the method to a six-degree-of-freedom fully-parallel manipulator.


Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


Author(s):  
Clement M. Gosselin ◽  
Rémi Ricard ◽  
Meyer A. Nahon

Abstract This paper presents a study of the workspace and kinematic properties of four different architectures of six-degree-of-freedom parallel mechanisms. For each architecture, the volume of the Cartesian workspace is computed at different orientations of the moving platform. The distribution of the workspace is also found by computing the 2D sections of the 3D workspace. The rotational workspace is then determined at the reference position of the platform. Finally, the stiffness properties of the architectures are obtained. Normalization factors are then defined to account for the structural differences between the architectures of mechanisms. The comparison of the different architectures of parallel mechanisms has been performed using SIMPA, a specialized CAD tool developed for the kinematic analysis and optimization of parallel manipulators. The results thus obtained illustrate the range of performance which can be expected from different parallel architectures. Although none of the architectures proves to be better than all the others in all respects, particular architectures do excel in particular performance measures. The approach proposed would therefore be useful in further studies relating to the design and optimization of parallel manipulators and mechanisms.


Sign in / Sign up

Export Citation Format

Share Document