scholarly journals A singularity handling algorithm based on operational space control for six-degree-of-freedom anthropomorphic manipulators

2019 ◽  
Vol 16 (3) ◽  
pp. 172988141985891
Author(s):  
Zhi-Hao Kang ◽  
Ching-An Cheng ◽  
Han-Pang Huang

In this article, we analyze the singularities of six-degree-of-freedom anthropomorphic manipulators and design a singularity handling algorithm that can smoothly go through singular regions. We show that the boundary singularity and the internal singularity points of six-degree-of-freedom anthropomorphic manipulators can be identified through a singularity analysis, although they do not possess the nice kinematic decoupling property as six-degree-of-freedom industrial manipulators. Based on this discovery, our algorithm adopts a switching strategy to handle these two cases. For boundary singularities, the algorithm modifies the control input to fold the manipulator back from the singular straight posture. For internal singularities, the algorithm controls the manipulator with null space motion. We show that this strategy allows a manipulator to move within singular regions and back to non-singular regions, so the usable workspace is increased compared with conventional approaches. The proposed algorithm is validated in simulations and real-time control experiments.

Robotica ◽  
2001 ◽  
Vol 19 (6) ◽  
pp. 649-662 ◽  
Author(s):  
Ki Cheol Park ◽  
Pyung-Hun Chang ◽  
Sukhan Lee

In this paper a new concept, named the Extended Operational Space (EXOS), has been proposed for the effective analysis and the real-time control of the robot manipulators with kinematic redundancy. The EXOS consists of the operational space (OS) and the optimal null space (NS): the operational space is used to describe manipulator end-effector motion; whereas the optimal null space, described by the minimum number of NS vectors, is used to express the self motion.Based upon the EXOS formulation, the kinematics, statics, and dynamics of redundant manipulators have been analyzed, and control laws based on the dynamics have been proposed. The inclusion of only the minimum number of NS vectors has changed the resulting dynamic equations into a very compact form, yet comprehensive enough to describe: not only the dynamic behavior or the end effector, but also that of the self motion; and at the same time the interaction of these two motions. The comprehensiveness is highlighted by the demonstration of the dynamic couplings between OS dynamics and NS dynamics, which are quite elusive in other approaches.Using the proposed dynamic controls, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effectiveness of the proposed method has been demonstrated by simulations and experiments.


Author(s):  
Damien Chablat ◽  
Philippe Wenger

This paper is devoted to the kinematic design of a new six degree-of-freedom haptic device using two parallel mechanisms. The first one, called orthoglide, provides the translation motions and the second one, called agile eye, produces the rotational motions. These two motions are decoupled to simplify the direct and inverse kinematics, as it is needed for real-time control. To reduce the inertial load, the motors are fixed on the base and a transmission with two universal joints is used to transmit the rotational motions from the base to the end-effector. Two alternative wrists are proposed (i), the agile eye with three degrees of freedom or (ii) a hybrid wrist made by the assembly of a two-dof agile eye with a rotary motor. The last one is optimized to increase its stiffness and to decrease the number of moving parts.


2009 ◽  
Vol 147-149 ◽  
pp. 1-6 ◽  
Author(s):  
Rafal Osypiuk ◽  
Torsten Kröger

This contribution presents a new force control concept for industrial six-degree of freedom (DOF) manipulators, which uses a Hexa platform that provides an active environmental stiffness for all six DOFs. The paper focuses on the Hexa platform and is split into two essential parts: (i) parallel platform construction, and (ii) application of force control with industrial manipulators using a six-DOF environmental stiffness. This mechatronic solution almost gives one hundred percent robustness for stiffness changes in the environment, what guaranties a significant shortening of execution time.


Author(s):  
Jianjun Yao ◽  
Yuxuan Huang ◽  
Guilin Jiang ◽  
Shuang Gao ◽  
Rui Xiao ◽  
...  

Freight trains play a vital role in cargo transportation in the world. The freight cars need to be redistributed for marshalling according to different destinations in the hump yard. Humans are usually employed to uncouple the freight cars in the marshalling yard. However, the work environment is difficult to work in, because of its potential danger and the effects of the surrounding environment can have a very serious impact on human’s health. A wheeled robot is developed to replace humans to finish the uncoupling task. It has four degrees-of-freedom with flexible motion. Based on the D-H method, the kinematics, including the forward and the inverse kinematics, is firstly analysed. The dynamic analysis is then studied by Newton–Euler equations. The workspace is lastly investigated to verify its operational space such that the coupler can be easily reached by the robot manipulator. Those characteristic analyses provide a basis for motion planning and real-time control of the robot.


Author(s):  
Daxing Zeng ◽  
Sijun Zhu ◽  
Zhen Huang

This paper presents a family of novel lower-mobility decoupled parallel mechanisms (DPMs), which consists of one 5-DOF (degree of freedom) DPM, two 4-DOF DPMs, three 3-DOF DPMs, and three 2-DOF DPMs. The basic feature of this family is that the moving platform and the fixed base of the DPMs are connected by two limbs and the motion of the moving platform is fully decoupled. Then the constraint screw method is used to analyze the motion feature of all DPMs presented in this paper. The mobility of these DPMs has also been calculated by the Modified Grubler-Kutzbach criterion. All the DPMs in this paper are simple and no computation is required for real-time control.


Author(s):  
Jianjun Yao ◽  
Le Zhang ◽  
Shuo Chen ◽  
Zhenshuai Wan ◽  
Tao Wang ◽  
...  

Purpose – The paper aims to achieve translational shaking tests on a 6-DOF hydraulic parallel manipulator. Shaking tests are commonly performed on shaking tables, which are generally used for small motion ranges and are usually financially costly. The research is required to generate shaking motions in three translational directions for a specimen for shaking tests, but it also needs to produce 6-degree of freedom (DOF) motions with large motion ranges. Design/methodology/approach – A hydraulic 6-DOF (degree of freedom) parallel manipulator is applied to achieve this goal. The link-space control is adopted for the manipulator, and PID controller and feed-forward controller are used for each loop of the system. A hybrid reference signal generator is proposed by using a shaking controller, which is developed to convert the shaking motion into position signal. The converted result is directly added to the pose signal. The whole real-time control system is realized by using MATLAB xPC Target. Findings – The developed method is verified on the hydraulic 6-DOF parallel manipulator with specimen. Experiments show very promising results that the proposed technology is really applicable to perform translational shaking tests on the hydraulic parallel manipulator. Originality/value – A simple yet efficient solution is proposed that allows shaking tests in three translational directions performed on the hydraulic 6-DOF parallel manipulator with wide motion ranges. The paper presents a state-of-the-art related to the applications of parallel robots in several fields of technology.


2020 ◽  
Vol 12 (6) ◽  
Author(s):  
Kefei Wen ◽  
Clément M. Gosselin

Abstract This paper focuses on the forward kinematic analysis of (6 + 3)-degree-of-freedom kinematically redundant hybrid parallel robots. Because all of the singularities are avoidable, the robot can cover a very large orientational workspace. The control of the robot requires the solution of the direct kinematic problem using the actuator encoder data as inputs. Seven different approaches of solving the forward kinematic problem based on different numbers of extra encoders are developed. It is revealed that five of these methods can produce a unique solution analytically or numerically. An example is given to validate the feasibility of these approaches. One of the provided approaches is applied to the real-time control of a prototype of the robot. It is also revealed that the proposed approaches can be applied to other kinematically redundant hybrid parallel robots proposed by the authors.


2008 ◽  
Vol 2008 ◽  
pp. 1-14
Author(s):  
Lili Diao ◽  
Martin Guay

Heart dynamics are usually unknown and require the application of real-time control technique because of the fatal nature of most cardiac arrhythmias. The problem of controlling the heart dynamics in a real-time manner is formulated as an adaptive learning output-tracking problem. For a class of nonlinear dynamic systems with unknown nonlinearities and nonaffine control input, a Lyapunov-based technique is used to develop a control law. An adaptive learning algorithm is exploited that guarantees the stability of the closed-loop system and convergence of the output tracking error to an adjustable neighborhood of the origin. In addition, good approximation of the unknown nonlinearities is also achieved by incorporating a persistent exciting signal in the parameter update law. The effectiveness of the proposed method is demonstrated by an application to a cardiac conduction system modelled by two coupled driven oscillators.


Author(s):  
Abderraouf Maoudj ◽  
Abdelfetah Hentout ◽  
Brahim Bouzouia ◽  
Redouane Toumi

Manipulator robots are widely used in many fields to replace humans in complex and risky environments. However, in some particular environments the robot is prone to failure, resulting in decreased performance. In such environments, it is extremely difficult to repair the robot which interrupts the execution process. Therefore, fault tolerance plays an important role in industrial manipulators applications. In this paper, the key problems related to fault-tolerance and path planning of manipulator robots under joints failures are handled within an on-line fault-tolerant fuzzy-logic based path planning approach for high degree-of-freedom robots. This approach provides an alternative to using mathematical models to control such robots, and improves tolerance to certain faults and mechanical failures. The controller consists of two fuzzy units (i) the first unit, Fuzzy_Path_Planner, is responsible of path planning; (ii) the second unit, Fuzzy_Obstacle_Avoidance, is conceived for obstacles avoidance. Moreover, the proposed approach is capable of repelling the manipulator away from both local minima and limit cycle problems. Finally, to validate the proposed approach and show its performances and effectiveness, different tests are carried out on two six degree-of-freedom manipulator robots (ULM and PUMA560 robots), accomplishing point-to-point tasks, with and without considering some joints failures.


Sign in / Sign up

Export Citation Format

Share Document