Tangent bundle RRT: A randomized algorithm for constrained motion planning

Robotica ◽  
2014 ◽  
Vol 34 (1) ◽  
pp. 202-225 ◽  
Author(s):  
Beobkyoon Kim ◽  
Terry Taewoong Um ◽  
Chansu Suh ◽  
F. C. Park

SUMMARYThe Tangent Bundle Rapidly Exploring Random Tree (TB-RRT) is an algorithm for planning robot motions on curved configuration space manifolds, in which the key idea is to construct random trees not on the manifold itself, but on tangent bundle approximations to the manifold. Curvature-based methods are developed for constructing tangent bundle approximations, and procedures for random node generation and bidirectional tree extension are developed that significantly reduce the number of projections to the manifold. Extensive numerical experiments for a wide range of planning problems demonstrate the computational advantages of the TB-RRT algorithm over existing constrained path planning algorithms.

2012 ◽  
Vol 60 (3) ◽  
pp. 547-555 ◽  
Author(s):  
D. Paszuk ◽  
K. Tchoń ◽  
Z. Pietrowska

Abstract We study the kinematics of the trident snake robot equipped with either active joints and passive wheels or passive joints and active wheels. A control system representation of the kinematics is derived, and control singularities examined. Two motion planning problems are addressed, corresponding to diverse ways of controlling the robot, and solved by means of the endogenous configuration space approach. The constraints imposed by the presence of control singularities are handled using the imbalanced Jacobian algorithm assisted by an auxiliary feedback. Performance of the motion planning algorithms is demonstrated by computer simulations.


Author(s):  
Davide Bilò ◽  
Yann Disser ◽  
Luciano Gualà ◽  
Matúš Mihal’ák ◽  
Guido Proietti ◽  
...  

2018 ◽  
Vol 37 (7) ◽  
pp. 779-817 ◽  
Author(s):  
Troy McMahon ◽  
Shawna Thomas ◽  
Nancy M Amato

Motion planning for constrained systems is a version of the motion planning problem in which the motion of a robot is limited by constraints. For example, one can require that a humanoid robot such as a PR2 remain upright by constraining its torso to be above its base or require that an object such as a bucket of water remain upright by constraining the vertices of the object to be parallel to the robot’s base. Grasping can be modeled by requiring that the end effectors of the robot be located at specified handle positions. Constraints might require that the robot remain in contact with a surface, or that certain joints of the robot remain in contact with each other (e.g., closed chains). Such problems are particularly difficult because the constraints form a manifold in C-space, and planning must be restricted to this manifold. High-degree-of-freedom motion planning and motion planning for constrained systems has applications in parallel robotics, grasping and manipulation, computational biology and molecular simulations, and animation. We introduce a new concept, reachable volumes, that are a geometric representation of the regions the joints and end effectors of a robot can reach, and use it to define a new planning space called RV-space where all points automatically satisfy a problem’s constraints. Visualizations of reachable volumes can enable operators to see the regions of workspace that different parts of the robot can reach. Samples and paths generated in RV-space naturally conform to constraints, making planning for constrained systems no more difficult than planning for unconstrained systems. Consequently, constrained motion planning problems that were previously difficult or unsolvable become manageable and in many cases trivial. We introduce tools and techniques to extend the state-of-the-art sampling-based motion planning algorithms to RV-space. We define a reachable volumes sampler, a reachable volumes local planner, and a reachable volumes distance metric. We showcase the effectiveness of RV-space by applying these tools to motion planning problems for robots with constraints on the end effectors and/or internal joints of the robot. We show that RV-based planners are more efficient than existing methods, particularly for higher-dimensional problems, solving problems with 1000 or more degrees of freedom for multi-loop and tree-like linkages.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yang Li ◽  
Fubin Zhang ◽  
Demin Xu ◽  
Jiguo Dai

Motion planning is a crucial, basic issue in robotics, which aims at driving vehicles or robots towards to a given destination with various constraints, such as obstacles and limited resource. This paper presents a new version of rapidly exploring random trees (RRT), that is, liveness-based RRT (Li-RRT), to address autonomous underwater vehicles (AUVs) motion problem. Different from typical RRT, we define an index of each node in the random searching tree, called “liveness” in this paper, to describe the potential effectiveness during the expanding process. We show that Li-RRT is provably probabilistic completeness as original RRT. In addition, the expected time of returning a valid path with Li-RRT is obviously reduced. To verify the efficiency of our algorithm, numerical experiments are carried out in this paper.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 395 ◽  
Author(s):  
Fusheng Zha ◽  
Yizhou Liu ◽  
Wei Guo ◽  
Pengfei Wang ◽  
Mantian Li ◽  
...  

Finding feasible motion for robots with high-dimensional configuration space is a fundamental problem in robotics. Sampling-based motion planning algorithms have been shown to be effective for these high-dimensional systems. However, robots are often subject to task constraints (e.g., keeping a glass of water upright, opening doors and coordinating operation with dual manipulators), which introduce significant challenges to sampling-based motion planners. In this work, we introduce a method to establish approximate model for constraint manifolds, and to compute an approximate metric for constraint manifolds. The manifold metric is combined with motion planning methods based on projection operations, which greatly improves the efficiency and success rate of motion planning tasks under constraints. The proposed method Approximate Graph-based Constrained Bi-direction Rapidly Exploring Tree (AG-CBiRRT), which improves upon CBiRRT, and CBiRRT were tested on several task constraints, highlighting the benefits of our approach for constrained motion planning tasks.


2017 ◽  
Vol 27 (4) ◽  
pp. 555-573 ◽  
Author(s):  
Joanna Ratajczak ◽  
Krzysztof Tchoń

AbstractThis paper presents the dynamically consistent Jacobian inverse for non-holonomic robotic system, and its application to solving the motion planning problem. The system’s kinematics are represented by a driftless control system, and defined in terms of its input-output map in accordance with the endogenous configuration space approach. The dynamically consistent Jacobian inverse (DCJI) has been introduced by means of a Riemannian metric in the endogenous configuration space, exploiting the reduced inertia matrix of the system’s dynamics. The consistency condition is formulated as the commutativity property of a diagram of maps. Singular configurations of DCJI are studied, and shown to coincide with the kinematic singularities. A parametric form of DCJI is derived, and used for solving example motion planning problems for the trident snake mobile robot. Some advantages in performance of DCJI in comparison to the Jacobian pseudoinverse are discovered.


Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Peng Cai ◽  
Xiaokui Yue ◽  
Hongwen Zhang

Abstract In this paper, we present a novel sampling-based motion planning method in various complex environments, especially with narrow passages. We use online the results of the planner in the ADD-RRT framework to identify the types of the local configuration space based on the principal component analysis (PCA). The identification result is then used to accelerate the expansion similar to RRV around obstacles and through narrow passages. We also propose a modified bridge test to identify the entrance of a narrow passage and boost samples inside it. We have compared our method with known motion planners in several scenarios through simulations. Our method shows the best performance across all the tested planners in the tested scenarios.


Author(s):  
Sven-Erik Ekström ◽  
Paris Vassalos

AbstractIt is known that the generating function f of a sequence of Toeplitz matrices {Tn(f)}n may not describe the asymptotic distribution of the eigenvalues of Tn(f) if f is not real. In this paper, we assume as a working hypothesis that, if the eigenvalues of Tn(f) are real for all n, then they admit an asymptotic expansion of the same type as considered in previous works, where the first function, called the eigenvalue symbol $\mathfrak {f}$ f , appearing in this expansion is real and describes the asymptotic distribution of the eigenvalues of Tn(f). This eigenvalue symbol $\mathfrak {f}$ f is in general not known in closed form. After validating this working hypothesis through a number of numerical experiments, we propose a matrix-less algorithm in order to approximate the eigenvalue distribution function $\mathfrak {f}$ f . The proposed algorithm, which opposed to previous versions, does not need any information about neither f nor $\mathfrak {f}$ f is tested on a wide range of numerical examples; in some cases, we are even able to find the analytical expression of $\mathfrak {f}$ f . Future research directions are outlined at the end of the paper.


Sign in / Sign up

Export Citation Format

Share Document