DO GLOBAL WARMING AND CLIMATE CHANGE REPRESENT A SERIOUS THREAT TO OUR WELFARE AND ENVIRONMENT?

2009 ◽  
Vol 26 (2) ◽  
pp. 193-230 ◽  
Author(s):  
Michael E. Mann

The science underlying global warming, climate change, and the connections between these phenomena are reviewed. Projected future climate changes under various plausible scenarios of future human behavior are explored, as are the potential impacts of projected climate changes on society, ecosystems, and our environment. The economic, security, and ethical considerations relevant to determining the threat posed by climate change are subsequently assessed. The article then discusses the various means available for climate change mitigation, focusing on the relative strengths and weaknesses of various societal alternatives including ‘geoengineering’ and transitioning to less carbon intensive energy sources. The article concludes with the author's views as to what steps might most profitably be taken to avert dangerous anthropogenic interference with Earth's climate, and the ramifications if such steps are not taken.

2020 ◽  
Vol 5 (1) ◽  
pp. 47-58
Author(s):  
Didem Gunes Yilmaz ◽  

Paris Agreement of December 2015 was the last official initiative led by the United Nations (UN) as the driver of climate change mitigation. Climate change was hence linked with an increase in the occurrence of natural hazards. A variety of initiatives were consequently adopted under different themes such as sustainable cities, climate-friendly development and low-carbon cities. However, most of the initiatives targeted by global cities with urban areas being the focus in terms of taking action against global warming issues. This is due to the structural and environmental features of cities characterized by being populated, as such, they not only generate a large number of carbon emissions but also happens to be the biggest consumer of natural resources. In turn, they create a microclimate, which contributes to climate change. Masdar City, for example, was designed as the first fully sustainable urban area, which replaced fuel-based energy with the electric-based energy. China, as another example, introduced the Sponge Cities action, a method of urban water management to mitigate against flooding. Consequently, architects and urban planners are urged to conform to the proposals that would mitigate global warming. This paper, as a result, examines some of the models that have been internationally adopted and thereafter provide the recommendations that can be implemented in large urban areas in Turkey, primarily in Istanbul.


2019 ◽  
Vol 5 (9) ◽  
pp. eaau2406 ◽  
Author(s):  
Miroslav Trnka ◽  
Song Feng ◽  
Mikhail A. Semenov ◽  
Jørgen E. Olesen ◽  
Kurt Christian Kersebaum ◽  
...  

Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near-simultaneous droughts across key world wheat-producing areas.


Author(s):  
Nishi Srivastava

Climate change caused due to our careless activities towards our nature, ecosystem, and whole earth system. We are paying and will be paying in future for our irresponsible activities in past and present. Increased concentration of Green House Gases (GHG) has caused severe global warming which will cause melting of glacier and results in sea level rise. To avoid and reduce the intensity and severity of global warming and climate change, its mitigation is essential. In this chapter we have focused on various issues related with climate change and mitigation strategies.


Author(s):  
Nishi Srivastava

Climate change caused due to our careless activities towards our nature, ecosystem, and whole earth system. We are paying and will be paying in future for our irresponsible activities in past and present. Increased concentration of Green House Gases (GHG) has caused severe global warming which will cause melting of glacier and results in sea level rise. To avoid and reduce the intensity and severity of global warming and climate change, its mitigation is essential. In this chapter we have focused on various issues related with climate change and mitigation strategies.


Nature ◽  
2016 ◽  
Vol 530 (7589) ◽  
pp. 156-156 ◽  
Author(s):  
Howard Covington ◽  
James Thornton ◽  
Cameron Hepburn

2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1435-1455
Author(s):  
Miodrag Mesarovic

Global warming and other climate change phenomena became a worldwide exploited subject over recent decades. World science has made enormous progress in understanding past climate change and its causes, and continues to study current and potential impacts that will affect people in the future. All scientists agree that the Earth's climate is changing due to natural phenomena, and most of them argue that human activities are increasing the greenhouse effect, while some scientists attribute climate changes exclusively to the natural causes. Though there still is, and always will be, need for multiple lines of research on an extremely complex system like Earth's climate is, an immediate consensus is crucial for decision-makers to place climate change in the context of other large challenges facing the world today. This paper discusses the existing body of evidence on climate changes in the past, and uncertainties that prevent scientists to reach full consensus on how climate might change in the future. It extends the time scale of climate changes over the entire history of Earth to help better understanding of hypothetical changes and their consequences that could be expected both in the near and in a very distant future.


2017 ◽  
Vol 11 (1) ◽  
pp. 71-76
Author(s):  
Yusriani Sapta Dewi

Climate change is any substantial change in Earth’s climate that lasts for an extended period oftime. Global warming refers to climate change that causes an increase in the average temperature of thelower atmosphere. Global warming is the combined result of anthropogenic (human-caused) emissionsof greenhouse gases and changes in solar irradiance, while climate change refers to any change in thestate of the climate that can be identified by changes in the average and/or the variability of its properties(e.g., temperature, precipitation), and that persists for an extended period, typically decades or longer.Green open space is one of solution for climate change mitigation.


2021 ◽  
Author(s):  
Ram Lal Verma ◽  
Balram Ambade

Abstract Climate change poses enormous challenges to human civilization in food security, water security, and health security. Anthropogenic emissions of Greenhouse Gases (GHGs) are made responsible for climate change. The climate change mitigation agreements and treaties, from the Kyoto Protocol (1997) to the Paris Agreement (2015), are mainly focusing on emission reduction of GHGs. The Copenhagen Accord (2009) set the target of emission reduction of GHGs to the level of 1990, intending to keep the global warming below 2-degree centigrade (°C) above the temperature level of the pre-industrial era. The Paris Agreement (2015) further pursued efforts to limit the temperature increase to 1.5°C by reducing emissions of GHGs to 40 Gigatonne (Gt CO-eq) by 2030. However, assuming the countries will achieve the target of emission reduction of GHGs by 2030, the target of keeping global warming below 1.5°C is unlikely to achieve because the Paris Agreement (2015) has not included emission reduction of black carbon (BC) particles in the intergovernmental negotiation. The BC particles are strong climate warming agents whose climate forcing is more than half of that of carbon dioxide (CO2) – the main GHG. This article argues for the inclusion of BC mitigation measures in the climate change mitigation measures. As BC also causes severe health impacts, BC mitigation will bring multiple co-benefits for health and environment, including a quick fixing of climate change problems in a few weeks, since the residence time of BC in the atmosphere is about a week.


Sign in / Sign up

Export Citation Format

Share Document