Gravitation and cosmic expansion in conformal space-time

1953 ◽  
Vol 49 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Feza Gürsey ◽  
H. Bondi

AbstractA simple theory of gravitation is formulated in conformal Riemannian space-time. The metric is determined by a scalar function which satisfies a linear equation. A conclusion in favour of Einstein's general tensor theory is drawn from a discussion of the corrections to the Newtonian theory for purely gravitational phenomena. Finally the theory is applied to the cosmological problem and especially to the possibility of a steady-state universe. The velocity-distance law is shown to be compatible with a constant uniform distribution of matter without the need of artificial assumptions.

2004 ◽  
Vol 13 (06) ◽  
pp. 1073-1083
Author(s):  
ASIT BANERJEE ◽  
UJJAL DEBNATH ◽  
SUBENOY CHAKRABORTY

The generalized Szekeres family of solution for quasi-spherical space–time of higher dimensions are obtained in the scalar tensor theory of gravitation. Brans–Dicke field equations expressed in Dicke's revised units are exhaustively solved for all the subfamilies of the said family. A particular group of solutions may also be interpreted as due to the presence of the so-called C-field of Hoyle and Narlikar and for a chosen sign of the coupling parameter. The models show either expansion from a big bang type of singularity or a collapse with the turning point at a lower bound. There is one particular case which starts from the big bang, reaches a maximum and collapses with the in course of time to a crunch.


2016 ◽  
Vol 94 (12) ◽  
pp. 1338-1343 ◽  
Author(s):  
D.R.K. Reddy ◽  
S. Anitha ◽  
S. Umadevi

In this paper, we have obtained field equations of Sáez–Ballester (Phys. Lett. A, 113, 467 (1986)) scalar–tensor theory in the presence of two minimally interacting fields; matter and holographic dark energy components in the space–time described by a spatially homogeneous and anisotropic Bianchi type VI0 space–time. We have used the hybrid expansion law, proposed by Akarsu et al. (JCAP, 01, 022 (2014)), to obtain a determinate solution of the field equations. This solution represents a minimally interacting Bianchi type VI0 Sáez–Ballester universe. Physical and kinematical properties of the universe are also studied.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
David Pérez Carlos ◽  
Augusto Espinoza ◽  
Andrew Chubykalo

Abstract The purpose of this paper is to get second-order gravitational equations, a correction made to Jefimenko’s linear gravitational equations. These linear equations were first proposed by Oliver Heaviside in [1], making an analogy between the laws of electromagnetism and gravitation. To achieve our goal, we will use perturbation methods on Einstein field equations. It should be emphasized that the resulting system of equations can also be derived from Logunov’s non-linear gravitational equations, but with different physical interpretation, for while in the former gravitation is considered as a deformation of space-time as we can see in [2–5], in the latter gravitation is considered as a physical tensor field in the Minkowski space-time (as in [6–8]). In Jefimenko’s theory of gravitation, exposed in [9, 10], there are two kinds of gravitational fields, the ordinary gravitational field, due to the presence of masses, at rest, or in motion and other field called Heaviside field due to and acts only on moving masses. The Heaviside field is known in general relativity as Lense-Thirring effect or gravitomagnetism (The Heaviside field is the gravitational analogous of the magnetic field in the electromagnetic theory, its existence was proved employing the Gravity Probe B launched by NASA (See, for example, [11, 12]). It is a type of gravitational induction), interpreted as a distortion of space-time due to the motion of mass distributions, (see, for example [13, 14]). Here, we will present our second-order Jefimenko equations for gravitation and its solutions.


In Einstein’s theory of gravitation it is assumed that the geometry of space- time is characterised by the following equation for the measurement of displacement:— ds 2 = g mn dx m dx n { m n = 1, 2, 3, 4, the sign of summation being omitted for convenience. It is supposed that the coefficients, of which g mn is the type, are dependent upon the content of space, and the relation existing between them is the law of gravitation.


2003 ◽  
Vol 14 (01) ◽  
pp. 41-48 ◽  
Author(s):  
G. ZET ◽  
V. MANTA ◽  
S. BABETI

A deSitter gauge theory of gravitation over a spherical symmetric Minkowski space–time is developed. The "passive" point of view is adapted, i.e., the space–time coordinates are not affected by group transformations; only the fields change under the action of the symmetry group. A particular ansatz for the gauge fields is chosen and the components of the strength tensor are computed. An analytical solution of Schwarzschild–deSitter type is obtained in the case of null torsion. It is concluded that the deSitter group can be considered as a "passive" gauge symmetry for gravitation. Because of their complexity, all the calculations, inclusive of the integration of the field equations, are performed using an analytical program conceived in GRTensorII for MapleV. The program allows one to compute (without using a metric) the strength tensor [Formula: see text], Riemann tensor [Formula: see text], Ricci tensor [Formula: see text], curvature scalar [Formula: see text], field equations, and the integration of these equations.


Sign in / Sign up

Export Citation Format

Share Document