Conformal frames and field equations in a conformal theory of ǵravitation

1970 ◽  
Vol 67 (2) ◽  
pp. 397-414 ◽  
Author(s):  
Jamal N. Islam

AbstractSome aspects of the field equations of the conformal theory of gravitation put forward by Hoyle and Narlikar are studied. The field equations are conformally invariant and one can use a particular conformal frame to simplify the equations, since all conformal frames are regarded as physically equivalent. However, some conformal frames may be unsuitable in some regions of space-time, and with the use of such a frame one may get an unphysical solution. The use of conformal frames and the difficulties involved are illustrated by considering a given physical situation in two different conformal frames. The physical situation is that of two isolated particles. A static solution for this situation is obtained in both frames, and it is shown that a property that is quite unphysical in one frame transforms into a physically reasonable property in the other.

The field equations in the neighbourhood of a particle for a spherically symmetric metric in the conformal theory of gravitation put forward by Hoyle & Narlikar are examined. As the theory is conformally invariant, one can use different but physically equivalent conformal frames to study the equations. Previously these equations were studied in a conformal frame which, though suitable far away from the isolated particle, turns out not to be suitable in the neighbourhood of the particle. In the present paper a solution in a conformal frame is obtained that is suitable for considering regions near the particle. The solution thus obtained differs from the previous one in several respects. For example, it has no coordinate singularity for any non-zero value of the radial variable, unlike the previous solution or the Schwarzschild solution. It is also shown with the use of this solution that in this theory distant matter has an effect on local geometry.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
David Pérez Carlos ◽  
Augusto Espinoza ◽  
Andrew Chubykalo

Abstract The purpose of this paper is to get second-order gravitational equations, a correction made to Jefimenko’s linear gravitational equations. These linear equations were first proposed by Oliver Heaviside in [1], making an analogy between the laws of electromagnetism and gravitation. To achieve our goal, we will use perturbation methods on Einstein field equations. It should be emphasized that the resulting system of equations can also be derived from Logunov’s non-linear gravitational equations, but with different physical interpretation, for while in the former gravitation is considered as a deformation of space-time as we can see in [2–5], in the latter gravitation is considered as a physical tensor field in the Minkowski space-time (as in [6–8]). In Jefimenko’s theory of gravitation, exposed in [9, 10], there are two kinds of gravitational fields, the ordinary gravitational field, due to the presence of masses, at rest, or in motion and other field called Heaviside field due to and acts only on moving masses. The Heaviside field is known in general relativity as Lense-Thirring effect or gravitomagnetism (The Heaviside field is the gravitational analogous of the magnetic field in the electromagnetic theory, its existence was proved employing the Gravity Probe B launched by NASA (See, for example, [11, 12]). It is a type of gravitational induction), interpreted as a distortion of space-time due to the motion of mass distributions, (see, for example [13, 14]). Here, we will present our second-order Jefimenko equations for gravitation and its solutions.


2003 ◽  
Vol 14 (01) ◽  
pp. 41-48 ◽  
Author(s):  
G. ZET ◽  
V. MANTA ◽  
S. BABETI

A deSitter gauge theory of gravitation over a spherical symmetric Minkowski space–time is developed. The "passive" point of view is adapted, i.e., the space–time coordinates are not affected by group transformations; only the fields change under the action of the symmetry group. A particular ansatz for the gauge fields is chosen and the components of the strength tensor are computed. An analytical solution of Schwarzschild–deSitter type is obtained in the case of null torsion. It is concluded that the deSitter group can be considered as a "passive" gauge symmetry for gravitation. Because of their complexity, all the calculations, inclusive of the integration of the field equations, are performed using an analytical program conceived in GRTensorII for MapleV. The program allows one to compute (without using a metric) the strength tensor [Formula: see text], Riemann tensor [Formula: see text], Ricci tensor [Formula: see text], curvature scalar [Formula: see text], field equations, and the integration of these equations.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
O. V. Babourova ◽  
B. N. Frolov

The solution of the field equations of the conformal theory of gravitation with Dirac scalar field in Cartan-Weyl spacetime at the very early Universe is obtained. In this theory dark energy (described by an effective cosmological constant) is a function of the Dirac scalar field β. This solution describes the exponential decreasing of β at the inflation stage and has a limit to a constant value of the dark energy at large time. This can give a way to solving the fundamental cosmological constant problem as a consequence of the fields dynamics in the early Universe.


2004 ◽  
Vol 13 (06) ◽  
pp. 1073-1083
Author(s):  
ASIT BANERJEE ◽  
UJJAL DEBNATH ◽  
SUBENOY CHAKRABORTY

The generalized Szekeres family of solution for quasi-spherical space–time of higher dimensions are obtained in the scalar tensor theory of gravitation. Brans–Dicke field equations expressed in Dicke's revised units are exhaustively solved for all the subfamilies of the said family. A particular group of solutions may also be interpreted as due to the presence of the so-called C-field of Hoyle and Narlikar and for a chosen sign of the coupling parameter. The models show either expansion from a big bang type of singularity or a collapse with the turning point at a lower bound. There is one particular case which starts from the big bang, reaches a maximum and collapses with the in course of time to a crunch.


1981 ◽  
Vol 59 (11) ◽  
pp. 1723-1729 ◽  
Author(s):  
R. B. Mann ◽  
J. W. Moffat

The problem of the motion of test particles is studied in a theory of gravitation based on a nonsymmetric gμν. According to the conservation laws the test particles can follow two kinds of geodesies, depending on the definition of a local inertial frame in the theory. One of these geodesies is nonmaximal and leads to a timelike and null world line complete space when a new parameter l, that occurs as a constant of integration in the spherically symmetric, static solution of the field equations, satisfies [Formula: see text]. In the theory, the parameter [Formula: see text] where N is the number of fermions in a system and a is a new universal coupling constant that satisfies [Formula: see text]. The physical implications of l and the associated conservation law of fermion number is discussed in detail.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Alvaro Restuccia ◽  
Francisco Tello-Ortiz

AbstractA spherically symmetric solution of the field equations of the Hořava–Lifshitz gravity–gauge vector interaction theory is obtained and analyzed. It describes a charged throat. The solution exists provided a restriction on the relation between the mass and charge is satisfied. The restriction reduces to the Reissner–Nordström one in the limit in which the coupling constants tend to the relativistic values of General Relativity. We introduce the correct charts to describe the solution across the entire manifold, including the throat connecting an asymptotic Minkowski space-time with a singular 3+1 dimensional manifold. The solution external to the throat on the asymptotically flat side tends to the Reissner–Nordström space-time at the limit when the coupling parameter, associated with the term in the low energy Hamiltonian that manifestly breaks the relativistic symmetry, tends to zero. Also, when the electric charge is taken to be zero the solution becomes the spherically symmetric and static solution of the Hořava–Lifshitz gravity.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
V. U. M. Rao ◽  
D. Neelima

Axially symmetric string cosmological models with bulk viscosity in Brans-Dicke (1961) and general relativity (GR) have been studied. The field equations have been solved by using the anisotropy feature of the universe in the axially symmetric space-time. Some important features of the models, thus obtained, have been discussed. We noticed that the presence of scalar field does not affect the geometry of the space-time but changes the matter distribution, and as a special case, it is always possible to obtain axially symmetric string cosmological model with bulk viscosity in general relativity.


1967 ◽  
Vol 63 (3) ◽  
pp. 809-817 ◽  
Author(s):  
Jamal N. Islam

AbstractRecently Hoyle and Narlikar(2) have put forward a conformal theory of gravitation in which they obtain an explicit solution of the field equations using certain approximations and assumptions of symmetry. To obtain the solution, the metric is assumed to have a special form. In the present paper a more general form of the metric is considered, and it is shown that many of the features of the special solution are shared by the solution in the more general case. In particular, the implications of the special solution as concerns the sign of the gravitational constant remain valid in the more general case under certain assumptions.


2004 ◽  
Vol 15 (07) ◽  
pp. 1031-1038 ◽  
Author(s):  
G. ZET ◽  
C. D. OPRISAN ◽  
S. BABETI

A de-Sitter gauge theory of the gravitational field is developed using a spherical symmetric Minkowski space–time as base manifold. The gravitational field is described by gauge potentials and the mathematical structure of the underlying space–time is not affected by physical events. The field equations are written and their solutions without singularities are obtained by imposing some constraints on the invariants of the model. An example of such a solution is given and its dependence on the cosmological constant is studied. A comparison with results obtained in General Relativity theory is also presented.


Sign in / Sign up

Export Citation Format

Share Document