On Springer's correspondence for simple groups of type En (n = 6, 7, 8)

Author(s):  
Dean Alvis ◽  
George Lusztig

Let G be a connected reductive algebraic group over complex numbers. To each unipotent element u ε G (up to conjugacy) and to the unit representation of the group of components of the centralizer of u, Springer (11), (12) associates an irreducible representation of the Weyl group W of G. The tensor product of that representation with the sign representation will be denoted ρu. (This agrees with the notation of (5).) This representation may be realized as a subspace of the cohomology in dimension 2β(u) of the variety of Borel subgroups containing u, where β(u) = dim . For example, when u = 1, ρu is the sign representation of W. The map u → ρu defines an injective map from the set of unipotent conjugacy classes in G to the set of irreducible representations of W (up to isomorphism). Our purpose is to describe this map in the case where G is simple of type Eu (n = 6, 7, 8). (When G is classical or of type F4, this map is described by Shoji (9), (10); the case where G is of type G2 is contained in (11).

2021 ◽  
Vol 25 (27) ◽  
pp. 780-806
Author(s):  
Pierre Baumann ◽  
Arnaud Demarais

Let G G be a connected reductive algebraic group over C \mathbb C . Through the geometric Satake equivalence, the fundamental classes of the Mirković–Vilonen cycles define a basis in each tensor product V ( λ 1 ) ⊗ ⋯ ⊗ V ( λ r ) V(\lambda _1)\otimes \cdots \otimes V(\lambda _r) of irreducible representations of G G . We compute this basis in the case G = S L 2 ( C ) G=\mathrm {SL}_2(\mathbb C) and conclude that in this case it coincides with the dual canonical basis at q = 1 q=1 .


1971 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Bhama Srinivasan

Let K be an algebraically closed field of characteristic ρ >0. If G is a connected, simple connected, semisimple linear algebraic group defined over K and σ an endomorphism of G onto G such that the subgroup Gσ of fixed points of σ is finite, Steinberg ([6] [7]) has shown that there is a complex irreducible character χ of Gσ with the following properties. χ vanishes at all elements of Gσ which are not semi- simple, and, if x ∈ G is semisimple, χ(x) = ±n(x) where n(x)is the order of a Sylow p-subgroup of (ZG(x))σ (ZG(x) is the centraliser of x in G). If G is simple he has, in [6], identified the possible groups Gσ they are the Chevalley groups and their twisted analogues over finite fields, that is, the ‘simply connected’ versions of finite simple groups of Lie type. In this paper we show, under certain restrictions on the type of the simple algebraic group G an on the characteristic of K, that χ can be expressed as a linear combination with integral coefficients of characters induced from linear characters of certain naturally defined subgroups of Gσ. This expression for χ gives an explanation for the occurence of n(x) in the formula for χ (x), and also gives an interpretation for the ± 1 occuring in the formula in terms of invariants of the reductive algebraic group ZG(x).


1963 ◽  
Vol 22 ◽  
pp. 33-56 ◽  
Author(s):  
Robert Steinberg

Our purpose here is to study the irreducible representations of semisimple algebraic groups of characteristic p 0, in particular the rational representations, and to determine all of the representations of corresponding finite simple groups. (Each algebraic group is assumed to be defined over a universal field which is algebraically closed and of infinite degree of transcendence over the prime field, and all of its representations are assumed to take place on vector spaces over this field.)


10.37236/1925 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
C. M. Ballantine ◽  
R. C. Orellana

The Kronecker product of two Schur functions $s_{\lambda}$ and $s_{\mu}$, denoted $s_{\lambda}\ast s_{\mu}$, is defined as the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group indexed by partitions of $n$, $\lambda$ and $\mu$, respectively. The coefficient, $g_{\lambda,\mu,\nu}$, of $s_{\nu}$ in $s_{\lambda}\ast s_{\mu}$ is equal to the multiplicity of the irreducible representation indexed by $\nu$ in the tensor product. In this paper we give an algorithm for expanding the Kronecker product $s_{(n-p,p)}\ast s_{\lambda}$ if $\lambda_1-\lambda_2\geq 2p$. As a consequence of this algorithm we obtain a formula for $g_{(n-p,p), \lambda ,\nu}$ in terms of the Littlewood-Richardson coefficients which does not involve cancellations. Another consequence of our algorithm is that if $\lambda_1-\lambda_2\geq 2p$ then every Kronecker coefficient in $s_{(n-p,p)}\ast s_{\lambda}$ is independent of $n$, in other words, $g_{(n-p,p),\lambda,\nu}$ is stable for all $\nu$.


2014 ◽  
Vol 150 (12) ◽  
pp. 2127-2142 ◽  
Author(s):  
Jeffrey Adams

AbstractThe Chevalley involution of a connected, reductive algebraic group over an algebraically closed field takes every semisimple element to a conjugate of its inverse, and this involution is unique up to conjugacy. In the case of the reals we prove the existence of a real Chevalley involution, which is defined over $\mathbb{R}$, takes every semisimple element of $G(\mathbb{R})$ to a $G(\mathbb{R})$-conjugate of its inverse, and is unique up to conjugacy by $G(\mathbb{R})$. We derive some consequences, including an analysis of groups for which every irreducible representation is self-dual, and a calculation of the Frobenius Schur indicator for such groups.


It is shown that corresponding to every pair of complex numbers κ , κ* for which 2( κ - κ* ) is real and integral, there exists, in general, one irreducible representation D κ, κ* , of the Lorentz group. However, if 4 κ , 4 κ* are both real and integral there are two representations D + κ, κ* and D - k, k* associated to the pair ( k, κ* ). All these representations are infinite except D - κ, κ* which is finite if 2 κ , 2 κ* are both integral. For suitable values of ( κ, κ* ), D κ, κ* or D + κ, κ* is unitary. U and B matrices similar to those given by Dirac (1936) and Fierz (1939) are introduced for these infinite representations. The extension of Dirac’s expansor formalism to cover half-integral spins is given. These new quantities, which are called expinors, bear the same relation to spinors as Dirac’s expansors to tensors. It is shown that they can be used to describe the spin properties of a particle in accordance with the principles of quantum mechanics.


1974 ◽  
Vol 26 (5) ◽  
pp. 1090-1097 ◽  
Author(s):  
A. J. van Zanten ◽  
E. de Vries

In this paper we consider representations of groups over the field of the complex numbers.The nth-Kronecker power σ⊗n of an irreducible representation σ of a group can be decomposed into the constituents of definite symmetry with respect to the symmetric group Sn. In the special case of the general linear group GL(N) in N dimensions the decomposition of the defining representation at once provides irreducible representations of GL(N) [9; 10; 11].


Author(s):  
Taher I. Mayassi ◽  
Mohammad N. Abdulrahim

AbstractWe consider the irreducible representations each of dimension 2 of the necklace braid group $${\mathcal {N}}{\mathcal {B}}_n$$ N B n ($$n=2,3,4$$ n = 2 , 3 , 4 ). We then consider the tensor product of the representations of $${\mathcal {N}}{\mathcal {B}}_n$$ N B n ($$n=2,3,4$$ n = 2 , 3 , 4 ) and determine necessary and sufficient condition under which the constructed representations are irreducible. Finally, we determine conditions under which the irreducible representations of $${\mathcal {N}}{\mathcal {B}}_n$$ N B n ($$n=2,3,4$$ n = 2 , 3 , 4 ) of degree 2 are unitary relative to a hermitian positive definite matrix.


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


Author(s):  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

AbstractIn this note, we unify and extend various concepts in the area of G-complete reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of G. We show that other variations of this notion, such as relative complete reducibility and $$\sigma $$ σ -complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.


Sign in / Sign up

Export Citation Format

Share Document