scholarly journals Mirković–Vilonen basis in type 𝐴₁

2021 ◽  
Vol 25 (27) ◽  
pp. 780-806
Author(s):  
Pierre Baumann ◽  
Arnaud Demarais

Let G G be a connected reductive algebraic group over C \mathbb C . Through the geometric Satake equivalence, the fundamental classes of the Mirković–Vilonen cycles define a basis in each tensor product V ( λ 1 ) ⊗ ⋯ ⊗ V ( λ r ) V(\lambda _1)\otimes \cdots \otimes V(\lambda _r) of irreducible representations of G G . We compute this basis in the case G = S L 2 ( C ) G=\mathrm {SL}_2(\mathbb C) and conclude that in this case it coincides with the dual canonical basis at q = 1 q=1 .

Author(s):  
Dean Alvis ◽  
George Lusztig

Let G be a connected reductive algebraic group over complex numbers. To each unipotent element u ε G (up to conjugacy) and to the unit representation of the group of components of the centralizer of u, Springer (11), (12) associates an irreducible representation of the Weyl group W of G. The tensor product of that representation with the sign representation will be denoted ρu. (This agrees with the notation of (5).) This representation may be realized as a subspace of the cohomology in dimension 2β(u) of the variety of Borel subgroups containing u, where β(u) = dim . For example, when u = 1, ρu is the sign representation of W. The map u → ρu defines an injective map from the set of unipotent conjugacy classes in G to the set of irreducible representations of W (up to isomorphism). Our purpose is to describe this map in the case where G is simple of type Eu (n = 6, 7, 8). (When G is classical or of type F4, this map is described by Shoji (9), (10); the case where G is of type G2 is contained in (11).


2021 ◽  
Vol 25 (37) ◽  
pp. 1049-1092
Author(s):  
Elie Casbi

Let g \mathfrak {g} be a finite simply-laced type simple Lie algebra. Baumann-Kamnitzer-Knutson recently defined an algebra morphism D ¯ \overline {D} on the coordinate ring C [ N ] \mathbb {C}[N] related to Brion’s equivariant multiplicities via the geometric Satake correspondence. This map is known to take distinguished values on the elements of the MV basis corresponding to smooth MV cycles, as well as on the elements of the dual canonical basis corresponding to Kleshchev-Ram’s strongly homogeneous modules over quiver Hecke algebras. In this paper we show that when g \mathfrak {g} is of type A n A_n or D 4 D_4 , the map D ¯ \overline {D} takes similar distinguished values on the set of all flag minors of C [ N ] \mathbb {C}[N] , raising the question of the smoothness of the corresponding MV cycles. We also exhibit certain relations between the values of D ¯ \overline {D} on flag minors belonging to the same standard seed, and we show that in any A D E ADE type these relations are preserved under cluster mutations from one standard seed to another. The proofs of these results partly rely on Kang-Kashiwara-Kim-Oh’s monoidal categorification of the cluster structure of C [ N ] \mathbb {C}[N] via representations of quiver Hecke algebras.


Author(s):  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

AbstractIn this note, we unify and extend various concepts in the area of G-complete reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of G. We show that other variations of this notion, such as relative complete reducibility and $$\sigma $$ σ -complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.


2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2015 ◽  
Vol 152 (2) ◽  
pp. 299-326 ◽  
Author(s):  
Fan Qin

We construct the quantized enveloping algebra of any simple Lie algebra of type $\mathbb{A}\mathbb{D}\mathbb{E}$ as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties. In particular, the dual canonical basis of a one-half quantum group with respect to Lusztig’s bilinear form is contained in the natural basis of the Grothendieck ring up to rescaling. This paper expands the categorification established by Hernandez and Leclerc to the whole quantum groups. It can be viewed as a geometric counterpart of Bridgeland’s recent work for type $\mathbb{A}\mathbb{D}\mathbb{E}$.


2021 ◽  
Vol 25 (21) ◽  
pp. 606-643
Author(s):  
Yury Neretin

We classify irreducible unitary representations of the group of all infinite matrices over a p p -adic field ( p ≠ 2 p\ne 2 ) with integer elements equipped with a natural topology. Any irreducible representation passes through a group G L GL of infinite matrices over a residue ring modulo p k p^k . Irreducible representations of the latter group are induced from finite-dimensional representations of certain open subgroups.


2020 ◽  
pp. 1-24
Author(s):  
MATTHEW WESTAWAY

Steinberg’s tensor product theorem shows that for semisimple algebraic groups, the study of irreducible representations of higher Frobenius kernels reduces to the study of irreducible representations of the first Frobenius kernel. In the preceding paper in this series, deforming the distribution algebra of a higher Frobenius kernel yielded a family of deformations called higher reduced enveloping algebras. In this paper, we prove that the Steinberg decomposition can be similarly deformed, allowing us to reduce representation theoretic questions about these algebras to questions about reduced enveloping algebras. We use this to derive structural results about modules over these algebras. Separately, we also show that many of the results in the preceding paper hold without an assumption of reductivity.


1971 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Bhama Srinivasan

Let K be an algebraically closed field of characteristic ρ >0. If G is a connected, simple connected, semisimple linear algebraic group defined over K and σ an endomorphism of G onto G such that the subgroup Gσ of fixed points of σ is finite, Steinberg ([6] [7]) has shown that there is a complex irreducible character χ of Gσ with the following properties. χ vanishes at all elements of Gσ which are not semi- simple, and, if x ∈ G is semisimple, χ(x) = ±n(x) where n(x)is the order of a Sylow p-subgroup of (ZG(x))σ (ZG(x) is the centraliser of x in G). If G is simple he has, in [6], identified the possible groups Gσ they are the Chevalley groups and their twisted analogues over finite fields, that is, the ‘simply connected’ versions of finite simple groups of Lie type. In this paper we show, under certain restrictions on the type of the simple algebraic group G an on the characteristic of K, that χ can be expressed as a linear combination with integral coefficients of characters induced from linear characters of certain naturally defined subgroups of Gσ. This expression for χ gives an explanation for the occurence of n(x) in the formula for χ (x), and also gives an interpretation for the ± 1 occuring in the formula in terms of invariants of the reductive algebraic group ZG(x).


Sign in / Sign up

Export Citation Format

Share Document