scholarly journals On Ptolemaic metric simplicial complexes

2010 ◽  
Vol 149 (1) ◽  
pp. 93-104 ◽  
Author(s):  
S. M. BUCKLEY ◽  
D. J. WRAITH ◽  
J. McDOUGALL

AbstractWe show that under certain mild conditions, a metric simplicial complex which satisfies the Ptolemy inequality is a CAT(0) space. Ptolemy's inequality is closely related to inversions of metric spaces. For a large class of metric simplicial complexes, we characterize those which are isometric to Euclidean space in terms of metric inversions.

2018 ◽  
Vol 122 (2) ◽  
pp. 161
Author(s):  
Rahim Rahmati-Asghar

In this paper we show that a $k$-shellable simplicial complex is the expansion of a shellable complex. We prove that the face ring of a pure $k$-shellable simplicial complex satisfies the Stanley conjecture. In this way, by applying an expansion functor to the face ring of a given pure shellable complex, we construct a large class of rings satisfying the Stanley conjecture.Also, by presenting some characterizations of $k$-shellable graphs, we extend some results due to Castrillón-Cruz, Cruz-Estrada and Van Tuyl-Villareal.


10.37236/1245 ◽  
1996 ◽  
Vol 3 (1) ◽  
Author(s):  
Art M. Duval

Björner and Wachs generalized the definition of shellability by dropping the assumption of purity; they also introduced the $h$-triangle, a doubly-indexed generalization of the $h$-vector which is combinatorially significant for nonpure shellable complexes. Stanley subsequently defined a nonpure simplicial complex to be sequentially Cohen-Macaulay if it satisfies algebraic conditions that generalize the Cohen-Macaulay conditions for pure complexes, so that a nonpure shellable complex is sequentially Cohen-Macaulay. We show that algebraic shifting preserves the $h$-triangle of a simplicial complex $K$ if and only if $K$ is sequentially Cohen-Macaulay. This generalizes a result of Kalai's for the pure case. Immediate consequences include that nonpure shellable complexes and sequentially Cohen-Macaulay complexes have the same set of possible $h$-triangles.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jeffrey Bergfalk ◽  
Chris Lambie-Hanson

Abstract In 1988, Sibe Mardešić and Andrei Prasolov isolated an inverse system $\textbf {A}$ with the property that the additivity of strong homology on any class of spaces which includes the closed subsets of Euclidean space would entail that $\lim ^n\textbf {A}$ (the nth derived limit of $\textbf {A}$ ) vanishes for every $n>0$ . Since that time, the question of whether it is consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for every $n>0$ has remained open. It remains possible as well that this condition in fact implies that strong homology is additive on the category of metric spaces. We show that assuming the existence of a weakly compact cardinal, it is indeed consistent with the $\mathsf {ZFC}$ axioms that $\lim ^n \textbf {A}=0$ for all $n>0$ . We show this via a finite-support iteration of Hechler forcings which is of weakly compact length. More precisely, we show that in any forcing extension by this iteration, a condition equivalent to $\lim ^n\textbf {A}=0$ will hold for each $n>0$ . This condition is of interest in its own right; namely, it is the triviality of every coherent n-dimensional family of certain specified sorts of partial functions $\mathbb {N}^2\to \mathbb {Z}$ which are indexed in turn by n-tuples of functions $f:\mathbb {N}\to \mathbb {N}$ . The triviality and coherence in question here generalise the classical and well-studied case of $n=1$ .


10.37236/4894 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mina Bigdeli ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Antonio Macchia

Let $I\subset K[x_1,\ldots,x_n]$ be  a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that  $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)^k$ and show that $\mathrm{depth}\ L(I)^k=n$ for all $k\geq n$.


10.37236/1900 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Jakob Jonsson

We consider topological aspects of decision trees on simplicial complexes, concentrating on how to use decision trees as a tool in topological combinatorics. By Robin Forman's discrete Morse theory, the number of evasive faces of a given dimension $i$ with respect to a decision tree on a simplicial complex is greater than or equal to the $i$th reduced Betti number (over any field) of the complex. Under certain favorable circumstances, a simplicial complex admits an "optimal" decision tree such that equality holds for each $i$; we may hence read off the homology directly from the tree. We provide a recursive definition of the class of semi-nonevasive simplicial complexes with this property. A certain generalization turns out to yield the class of semi-collapsible simplicial complexes that admit an optimal discrete Morse function in the analogous sense. In addition, we develop some elementary theory about semi-nonevasive and semi-collapsible complexes. Finally, we provide explicit optimal decision trees for several well-known simplicial complexes.


Author(s):  
Khalid Hatim ◽  
Azeddine Baalal

In this paper, we construct a new framework that’s we call the weighted [Formula: see text]-simplicial complex and we define its spectral gap. An upper bound for our spectral gap is given by generalizing the Cheeger constant. The lower bound for our spectral gap is obtained from the first nonzero eigenvalue of the Laplacian acting on the functions of certain weighted [Formula: see text]-simplicial complexes.


2012 ◽  
Vol 55 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Kotaro Mine ◽  
Katsuro Sakai

AbstractLet |K| be the metric polyhedron of a simplicial complex K. In this paper, we characterize a simplicial subdivision K′ of K preserving the metric topology for |K| as the one such that the set K′(0) of vertices of K′ is discrete in |K|. We also prove that two such subdivisions of K have such a common subdivision.


1980 ◽  
Vol 32 (4) ◽  
pp. 783-803
Author(s):  
Michael A. Penna

Every finite simplicial complex has a tangent bundle in the category of simplicial bundles (see [9]). The goal of this paper is to classify simplicial bundles, and, as an application of this result, to construct Euler classes for a large class of combinatorial manifolds. This construction is closely related to [3] and [4].


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1160
Author(s):  
Václav Snášel ◽  
Pavla Dráždilová ◽  
Jan Platoš

Many real networks in biology, chemistry, industry, ecological systems, or social networks have an inherent structure of simplicial complexes reflecting many-body interactions. Over the past few decades, a variety of complex systems have been successfully described as networks whose links connect interacting pairs of nodes. Simplicial complexes capture the many-body interactions between two or more nodes and generalized network structures to allow us to go beyond the framework of pairwise interactions. Therefore, to analyze the topological and dynamic properties of simplicial complex networks, the closed trail metric is proposed here. In this article, we focus on the evolution of simplicial complex networks from clicks and k-CT graphs. This approach is used to describe the evolution of real simplicial complex networks. We conclude with a summary of composition k-CT graphs (glued graphs); their closed trail distances are in a specified range.


2016 ◽  
Vol 08 (03) ◽  
pp. 399-429 ◽  
Author(s):  
A. Costa ◽  
M. Farber

In this paper we introduce and develop the multi-parameter model of random simplicial complexes with randomness present in all dimensions. Various geometric and topological properties of such random simplicial complexes are characterised by convex domains in the high-dimensional parameter space (rather than by intervals, as in the usual one-parameter models). We find conditions under which a multi-parameter random simplicial complex is connected and simply connected. Besides, we give an intrinsic characterisation of the multi-parameter probability measure. We analyse links of simplexes and intersections of multi-parameter random simplicial complexes and show that they are also multi-parameter random simplicial complexes.


Sign in / Sign up

Export Citation Format

Share Document