2.—Barriers bounded by Two Transition Points of Arbitrary Odd Order

Author(s):  
John Heading

SynopsisA generalisation is considered of the potential barrier problem beyond the familiar case in which the barrier is bounded by transition points of order one. Here, the two transition points involved are of arbitrary odd order. The approximate method employed, though formal in character, avoids certain pitfalls often made in the past whereby certain exponentially small terms within the barrier are confounded with inherent error terms. This confusion is avoided in the treatment given here by tracing uniformly approximate solutions round the transition points in the complex plane by means of the Stokes phenomenon, the method not requiring the dubious concept of a subdominant term existing in the presence of a dominant term on a Stokes line. At the same time, the solutions to which the reflection and transmission coefficients may be attached are carefully discussed, so that the appearance of a small exponential term may be seen to be genuine when taken in conjunction with inherent error terms. The resulting formula for the modulus of the reflection coefficient generalizes the more elementary formula.

1979 ◽  
Vol 85 (2) ◽  
pp. 361-377 ◽  
Author(s):  
John Heading

AbstractThe potential barrier governed by a second-order ordinary differential equation has been studied for decades, both exactly and approximately. These concepts are generalized so as to be applicable to differential equations of arbitrary even order. The barrier is defined, and the approximate solutions both inside and outside are derived. Transmission through this barrier is investigated by deriving connexion formulae through the two transition points of arbitrary odd order. The transmitted solution is linked through the barrier to the incident and reflected solutions in a unique manner, enabling an approximate transmission coefficient to be calculated and its structure to be ascertained. Every concept in the investigation is a suitable generalization of the elementary case, the generalization possible being a product of the approximate processes adopted and how they limit the nature of the generalization. An inspection of the elementary case and its transmission coefficient gives no hint as to the nature of the generalization, the limitations necessarily imposed, and the structure of the final transmission coefficient, since the elementary case has special features not present in the generalization.


Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. SM107-SM114 ◽  
Author(s):  
James C. White ◽  
Richard W. Hobbs

The computationally efficient phase-screen forward modeling technique is extended to allow investigation of nonnormal raypaths. The code is developed to accommodate all diffracted and converted phases up to critical angle, building on a geometric construction method. The new approach relies upon prescanning the model space to assess the complexity of each screen. The propagating wavefields are then divided as a function of horizontal wavenumber, and each subset is transformed to the spatial domain separately, carrying with it angular information. This allows both locally accurate 3D phase corrections and Zoeppritz reflection and transmission coefficients to be applied. The phase-screen code is further developed to handle simple anisotropic media. During phase-screen modeling, propagation is undertaken in the wavenumber domain where exact expressions for anisotropic phase velocities are available. Traveltimes and amplitude effects from a range of anisotropic shales are computed and compared with previous published results.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
J. Y. Chen ◽  
H. L. Chen ◽  
E. Pan

Reflection and transmission coefficients of plane waves with oblique incidence to a multilayered system of piezomagnetic and/or piezoelectric materials are investigated in this paper. The general Christoffel equation is derived from the coupled constitutive and balance equations, which is further employed to solve the elastic displacements and electric and magnetic potentials. Based on these solutions, the reflection and transmission coefficients in the corresponding layered structures are subsequently obtained by virtue of the propagator matrix method. Two layered examples are selected to verify and illustrate our solutions. One is the purely elastic layered system composed of aluminum and organic glass materials. The other layered system is composed of the novel magnetoelectroelastic material and the organic glass. Numerical results are presented to demonstrate the variation of the reflection and transmission coefficients with different incident angles, frequencies, and boundary conditions, which could be useful to nondestructive evaluation of this novel material structure based on wave propagations.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Yunhua Cao ◽  
Haiying Li ◽  
Zhe Wang ◽  
Zhensen Wu

Propagation characteristics of oblique incident terahertz wave from the nonuniform dusty plasma are studied using the propagation matrix method. Assuming that the electron density distribution of dusty plasma is parabolic model, variations of power reflection, transmission, and absorption coefficients with frequencies of the incident wave are calculated as the wave illuminates the nonuniform dusty plasma from different angles. The effects of incident angles, number density, and radius of the dust particles on propagation characteristics are discussed in detail. Numerical results show that the number density and radius of the dust particles have very little influences on reflection and transmission coefficients and have obvious effects on absorption coefficients. The terahertz wave has good penetrability in dusty plasma.


1992 ◽  
Vol 59 (1) ◽  
pp. 102-108 ◽  
Author(s):  
Yonglin Xu

The reflection and transmission of a plane wave by a distribution of cavities in the interface of two solids of different mechanical properties are investigated. For the calculation of the reflection and transmission coefficients by a distribution of cavities, six auxiliary wave states are used in conjunction with the reciprocal identity. Specific results are presented for scattering by a doubly periodic array of cavities in the interface of solids of different elastic moduli and mass densities. For a typical cell, the boundary integral equations for scattering by a cavity at the interface of two solids are derived on the basis of continuity of displacements and tractions across the interface and by taking advantage of the geometrical periodicity. Solutions to the system of singular integral equations have been obtained by the boundary element method. Numerical results are presented as functions of the frequency for two angles of incidence.


Sign in / Sign up

Export Citation Format

Share Document