Stability and instability of steady-state solutions for a hydrodynamic model of semiconductors

Author(s):  
Harumi Hattori

We discuss the stability and instability of steady-state solutions for a hydrodynamic model of semiconductors. We study the case where the doping profile is close to a positive constant and depends on the special variable x. We shall show that a given steady-state solution is asymptotically stable or unstable, depending on whether or not the density of the initial data satisfies P = 0, where P is defined in (3.12).

1969 ◽  
Vol 91 (4) ◽  
pp. 1175-1179 ◽  
Author(s):  
C. C. Fu ◽  
B. Paul

This paper deals with the stability of motion of an elastically suspended vibrating hammer that impacts upon an energy absorbing surface. The energy absorber could represent, for example, a rock drill bit or drill steel, or a spike being driven by the hammer. The problem is intrinsically nonlinear because the instant of impact depends upon the motion of the hammer. “Simple steady-state solutions” are derived, and their asymptotic stability is examined. Regions in which the analytically constructed simple solutions are asymptotically stable are determined in parameter space. Results have been checked by a digital computer simulation.


2010 ◽  
Vol 18 (01) ◽  
pp. 161-172 ◽  
Author(s):  
MINI GHOSH

This paper proposes and analyzes a nonlinear model for the biological control of algal bloom in a lake. Algal bloom often occurs in a lake due to excessive flow of nutrients from domestic drainage, industrial and agricultural waste, and this causes the decrease in the concentration of dissolved oxygen in the lake. Hence, it threatens the survival of other species of the ecosystem indirectly, and it is also responsible for the degradation of water quality in the lake because of less oxygen content. In this work we study biological control which means the introduction of predatory fish, i.e. the release of algae-eating fish into the lake to control the rapid growth of algae. We formulate our model by assuming Michaelis-Menten type ratio-dependent prey-predator interaction. The equilibrium of the mathematical model is found and also the stability is discussed in detail. It is observed that the positive equilibria is locally asymptotically stable under certain conditions on the parameters. Also the system is simulated for various sets of parameters and it is found that system may oscillate for some realistic set of parameters. In fact we found that the parameter m, which is the half saturation constant, is very sensitive and with the decrease in this parameter steady state solution of the system changes to stable oscillation. On the practical side, it means that the method of biological control by introducing predatory fish is not always beneficial because outcome of this method depends upon the actual value of the parameter. Here we get the paradox of biological control, which says that it is not possible to have low level of steady state equilibrium of prey population.


1977 ◽  
Vol 32 (8) ◽  
pp. 805-812
Author(s):  
Fr. Kaiser

Abstract Phonon transport in locally disturbed media is considered. The steady state solutions of the Peierls-Boltzmann type equations are studied. In particular, the flux-dependence of local excitations is investigated. It is proven that for a large class of scattering processes only two types of steady states are possible: a hysteresis type and a threshold one. 4 different types of factorization procedures are applied and it is shown that for these cases the steady states remain nearly unchanged. The stability conditions are reformulated in such a way that one can give a geometrical interpretation. The only stable solutions are nodes. The necessary modification of our model system to allow for limit cycles is indicated. Also, a more complicated situation, where the interaction Hamiltonian HI is a superposition of terms of different order, is investigated. The resulting steady state solution is again a hysteresis.


1990 ◽  
Vol 216 ◽  
pp. 255-284 ◽  
Author(s):  
C. J. Lee ◽  
H. K. Cheng

Global interaction of the boundary layer separating from an obstacle with resulting open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta condition of the classical theory is the breakaway criterion of the laminar triple-deck interaction (Sychev 1972; Smith 1977), which, together with the assumption of a uniform wake/eddy pressure, leads to a nonlinear equation system for the breakaway location and wake shape. The solutions depend on a Reynolds numberReand an airfoil thickness ratio or incidence τ and, in the domain$Re^{\frac{1}{16}}\tau = O(1)$considered, the separation locations are found to be far removed from the classical Brillouin–Villat point for the breakaway from a smooth shape. Bifurcations of the steady-state solution are found among examples of symmetrical and asymmetrical flows, allowing open and closed wakes, as well as symmetry breaking in an otherwise symmetrical flow. Accordingly, the influence of thickness and incidence, as well as Reynolds number is critical in the vicinity of branch points and cut-off points where steady-state solutions can/must change branches/types. The study suggests a correspondence of this bifurcation feature with the lift hysteresis and other aerodynamic anomalies observed from wind-tunnel and numerical studies in subcritical and high-subcriticalReflows.


1980 ◽  
Vol 47 (4) ◽  
pp. 871-874 ◽  
Author(s):  
J. R. Barber ◽  
J. Dundurs ◽  
M. Comninou

A simple one-dimensional model is described in which thermoelastic contact conditions give rise to nonuniqueness of solution. The stability of the various steady-state solutions discovered is investigated using a perturbation method. The results can be expressed in terms of the minimization of a certain energy function, but the authors have so far been unable to justify the use of such a function from first principles in view of the nonconservative nature of the system.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Serdal Pamuk

We present a mathematical model for capillary formation in tumor angiogenesis and solve it by linearizing it using an initial data perturbation method. This method is highly effective to obtain solutions of nonlinear coupled differential equations. We also provide a specific example resulting, that even a few terms of the obtained series solutions are enough to have an idea for the endothelial cell movement in a capillary. MATLAB-generated figures are provided, and the stability criteria are determined for the steady-state solution of the cell equation.


Author(s):  
F. M. Leslie

AbstractThe stability of the flow between concentric, rotating cylinders is discussed when the gap is small and the cylinders are rotating in the same direction for a class of anisotropic fluids in which the fluid has a preferred direction. An important conclusion of the analysis is that a steady-state solution of the equations has previously been considered unstable on false grounds.


2000 ◽  
Vol 23 (4) ◽  
pp. 261-270 ◽  
Author(s):  
B. Shi

An open problem given by Kocic and Ladas in 1993 is generalized and considered. A sufficient condition is obtained for each solution to tend to the positive steady-state solution of the systems of nonlinear Volterra difference equations of population models with diffusion and infinite delays by using the method of lower and upper solutions and monotone iterative techniques.


Sign in / Sign up

Export Citation Format

Share Document