A Standardised Method of Representing Fatigue Test Results

1958 ◽  
Vol 62 (570) ◽  
pp. 456-457 ◽  
Author(s):  
M. Fine

Figure 1 is a set of S-N curves for DTD. 150, taken from Rotol Structures Department Report No. 337. It is difficult to estimate N accurately on the flat part of the curve, and estimates of fatigue life by different people can be very different. Fig. 1, although based on scanty test results, is typical of S-N curves.

2016 ◽  
Vol 62 (1) ◽  
pp. 83-98 ◽  
Author(s):  
A. Szydło ◽  
K. Malicki

Abstract The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings’ fatigue life based on the results of quick and relatively easy static tests.


2014 ◽  
Vol 11 (2) ◽  
pp. 540-546
Author(s):  
Baghdad Science Journal

In this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fatigue strength) of composite . The results show us the reinforcement has important act to increased resistance to the fatigue compared with specimens have non reinforcement this side the specimens reinforcement of glass fiber have resistance to fatigue and fatigue life better than the specimens reinforcement of Kevlar fiber . According to hybrid composite sample fatigue test results showed that the sample which reinforced (Kevlar - regular glass – Kevlar) has a best results which showed stress carrying the most powerful and longer fatigue life with more than (1.3 ×10 6) cycle from other hybrids , while the sample with the sample with three Kevlar reinforced layers have less resistant to fatigue


2010 ◽  
Vol 654-656 ◽  
pp. 2583-2586
Author(s):  
Hee Young Ko ◽  
Kwang Bok Shin ◽  
Jung Seok Kim

In this study, the fatigue characteristics and life of woven glass fabric/epoxy laminate composites applied to railway vehicle were evaluated. The fatigue test was conducted by tension-tension load with stress ratio R of 0.1 and frequency of 5Hz. The material used to fatigue test was two types of woven glass fabric/epoxy laminate composite with and without the reinforcement of carbon/epoxy ply. Also, the fatigue life of woven glass fabric/epoxy laminate composite was compared with that of aluminum 6005 used to the car-body and under-frame structures of railway vehicle. The test results showed that the failure strength and life of woven glass fabric/epoxy laminate composite with the reinforcement of three carbon/epoxy plies had a remarkable improvement in comparison with that of bare specimen without reinforcement.


Author(s):  
D. Rozumek ◽  
Z. Marciniak

The paper presents the fatigue test results including the cracks growth in the composite zirconium-steel subjected to oscillatory bending. Specimens of square cross-section without melted layer and with a melted layer were tested. In the specimens the net ratio of thickness of steel to zirconium layers was h1 : h2 = 2.5 : 1. It was observed that a higher fraction of the intermetallic inclusions near the interface increase the fatigue life. Two different interaction mechanisms between a crack and interface were observed.


2008 ◽  
Vol 33-37 ◽  
pp. 163-168 ◽  
Author(s):  
Jun Deng ◽  
Marcus M.K. Lee ◽  
Pei Yan Huang

The adhesive bonding between the steel beam and carbon fibre reinforced polymer (CFRP) plate is the weakest link and fatigue performance is a major consideration. This paper gives details of a fatigue test programme of a series of small-scale steel beams bonded with a CFRP plate. Two phases of the fatigue life, including crack initiation life and crack propagation life, are considered. Backface-strain technique was applied to monitor crack initiation. An S-N curve was developed from the test results. The curve correlates the maximum principal interfacial stress at the plate end to the crack initiation life. The fatigue limit of the S-N curve was found to be about 30% of the ultimate static failure stress. In accordance with Paris Law, moreover, an equation was developed to predict the number of cycles during the crack propagation. The empirical coefficients of the equation were obtained from the fatigue test results. This equation can correctly predict the crack propagation life. The fatigue load range affects the fatigue life, but its significance is much less than the magnitude of the maximum load in the load range.


2009 ◽  
Vol 413-414 ◽  
pp. 757-764 ◽  
Author(s):  
Cheng Ming Lan ◽  
Hui Li

Based on fatigue test results of corroded wires obtained from dissection of actual parallel wire cables which were used on a certain domestic cable-stayed bridge, the fatigue properties of corroded parallel wire cable are investigated by the method of Monte Carlo simulation in this paper. The results of fatigue life and corrosion degree of corroded wire are presented. Comparisons between the original design information and fatigue test results, it can be seen that corrosions make the fatigue lives of wires decreasing sharply. The fatigue life of individual wire is described by Weibull distribution considered some useful parameters such as, stress range, mean stress, mean static strength and length effects. The effects of percentage of broken wire, cable S-N curve parameter on cable fatigue life are discussed. It can be seen that the cable fatigue lives are controlled by a small fraction of the cable wires with the shortest fatigue lives. Finally, the S-N curves of cable are calculated by Monte Carlo simulations based on the results of individual wire fatigue test, and compared with the results of cable fatigue test.


2013 ◽  
Vol 59 (3) ◽  
pp. 295-312
Author(s):  
M. Iwański ◽  
G. Mazurek

Abstract The paper presents the results of the study of the effect of a Fischer-Tropsch (F-T) synthetic wax on the resistance to permanent deformation of the AC 11S asphalt concrete. The synthetic wax was dosed at 1.5%, 2.5% and 3.5% by weight of bitumen 35/50. The compaction temperatures were 115°C, 130°C and 145°C. The criteria adopted for measuring the resistance to permanent deformation included the following parameters: stiffness modulus at 2, 10 and 20°C, permanent deformation (RTS), fatigue life determined using the indirect tensile fatigue test (ITFT) and resistance to rutting (WTSAIR, PRDAIR). The test results confirmed the positive influence of F-T synthetic wax on enhancing the permanent deformation resistance of asphalt concrete placed at lower compaction temperatures compared to that of standard asphalt concrete compacted at 140°C.


Author(s):  
Jeong K. Hong ◽  
Thomas P. Forte

Risers, pipelines and flowlines for deep water applications are subject to corrosive environments. Especially, in the presence of hydrogen sulfide which makes the field sour, their fatigue performance becomes significantly degraded. In order to quantify the sour degradation effect, a knock-down factor has been introduced. This factor is defined as the fatigue life reduction relative to the in-air fatigue life. Several sets of fatigue test results in sour service environments have been published. These include strip specimens of different sizes, e.g., diameters, wall thicknesses, and arc lengths. Naturally, the knock-down factor must be based upon a statistically valid number of fatigue test results obtained from the same specimen geometry and the same loading conditions tested in air and in sour conditions. Currently, the database available in the open literature is too limited to properly define a knock-down factor. Moreover, there is a great deal of scatter within the database and each test in a sour environment is costly and time consuming. Thus, it is difficult to establish a statistically valid database upon which to base the knock-down factor. A mesh-insensitive structural stress method has been developed by Battelle researchers and has been proven to be highly effective in correlating the fatigue behavior of welded joints. In 2007, the Battelle structural stress based weld fatigue master S-N curve was included in ASME Section VIII Div. 2 because it successfully consolidated more than 800 fatigue test results for weld toe failures onto a single master S-N curve with very little scatter, regardless of specimen shape, size, loading type, and steel alloy [1–2]. A knock-down factor is derived by applying the Battelle structural stress method to the existing database for sour environment tests and by using the current in-air database as the reference condition. This approach will reduce the uncertainty in the knock-down factor because it allows a wider range of sour environment data from specimens of different sizes, types, and loading conditions to be combined, while simultaneously reducing scatter. As such, a unified knock-down factor can be determined with greater statistical validity and wider applicability for design recommendations in sour conditions.


Sign in / Sign up

Export Citation Format

Share Document