Fatigue Properties Assessment of Corroded Cable

2009 ◽  
Vol 413-414 ◽  
pp. 757-764 ◽  
Author(s):  
Cheng Ming Lan ◽  
Hui Li

Based on fatigue test results of corroded wires obtained from dissection of actual parallel wire cables which were used on a certain domestic cable-stayed bridge, the fatigue properties of corroded parallel wire cable are investigated by the method of Monte Carlo simulation in this paper. The results of fatigue life and corrosion degree of corroded wire are presented. Comparisons between the original design information and fatigue test results, it can be seen that corrosions make the fatigue lives of wires decreasing sharply. The fatigue life of individual wire is described by Weibull distribution considered some useful parameters such as, stress range, mean stress, mean static strength and length effects. The effects of percentage of broken wire, cable S-N curve parameter on cable fatigue life are discussed. It can be seen that the cable fatigue lives are controlled by a small fraction of the cable wires with the shortest fatigue lives. Finally, the S-N curves of cable are calculated by Monte Carlo simulations based on the results of individual wire fatigue test, and compared with the results of cable fatigue test.

2016 ◽  
Vol 62 (1) ◽  
pp. 83-98 ◽  
Author(s):  
A. Szydło ◽  
K. Malicki

Abstract The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings’ fatigue life based on the results of quick and relatively easy static tests.


2014 ◽  
Vol 11 (2) ◽  
pp. 540-546
Author(s):  
Baghdad Science Journal

In this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fatigue strength) of composite . The results show us the reinforcement has important act to increased resistance to the fatigue compared with specimens have non reinforcement this side the specimens reinforcement of glass fiber have resistance to fatigue and fatigue life better than the specimens reinforcement of Kevlar fiber . According to hybrid composite sample fatigue test results showed that the sample which reinforced (Kevlar - regular glass – Kevlar) has a best results which showed stress carrying the most powerful and longer fatigue life with more than (1.3 ×10 6) cycle from other hybrids , while the sample with the sample with three Kevlar reinforced layers have less resistant to fatigue


1958 ◽  
Vol 62 (570) ◽  
pp. 456-457 ◽  
Author(s):  
M. Fine

Figure 1 is a set of S-N curves for DTD. 150, taken from Rotol Structures Department Report No. 337. It is difficult to estimate N accurately on the flat part of the curve, and estimates of fatigue life by different people can be very different. Fig. 1, although based on scanty test results, is typical of S-N curves.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hongshuai Gao ◽  
Quansheng Sun

There are many diseases in the deck pavement of long-span steel bridges under the action of vehicles, rainwater, and freezing. It is necessary to study a new type of pavement material with high waterproof property, light weight, and high bonding performance for steel deck pavement. Polyurethane cement composite (PUC) can be used for steel deck pavement. In order to find out the temperature effect on fatigue properties of PUC, the four-point bending fatigue test was carried out at different temperatures. In this paper, the optimum mix ratio of PUC was selected by compressive and flexural tests, and then the bending fatigue test was conducted under strain control mode. Under temperature and external force coupling condition, a method for predicting fatigue life of PUC is proposed by the combination of theoretical deduction and experimental research. The results show that the proposed formula can effectively describe the fatigue life and fatigue limit of PUC. Finally, compared with three different asphalt mixtures for steel deck pavement, it is found that the fatigue performance of polyurethane cement is better than that of asphalt mixture.


2014 ◽  
Vol 891-892 ◽  
pp. 273-277
Author(s):  
Josef Volák ◽  
Zbynek Bunda

This paper describes the fatigue properties of the steel P92. This material is widely used in the energy industry, especially for pipes and pipe bends of supercritical steam turbines. Steel P92 is alloyed with 2 % of tungsten compared to steel P91. This increases a creep strenght of the material. It is possible to reduce wall thickness of the P92 pipe up to about 20%. Fatigue tests were carried out on standard samples and compared with SFT samples (Small Fatigue Test). Using the device SSam 2 made by company Rolce Royce, it is possible to gently remove a samples from energy component without power plant shutdowns. Consider these correlations, i tis possible to determine mechanical properties of the material from small amount of removed experimental material.


Author(s):  
Ming Zhang ◽  
Weiqiang Wang ◽  
Aiju Li

The authors researched the effects of specimen size on the very high cycle fatigue properties of FV520B-I through ultrasonic fatigue testing. The test results showed that the very high cycle fatigue mechanism was not changed and the fatigue properties declined as the specimen size increased. The S-N curve moved downward and the fatigue life decreased under the same stress level maybe due to the heat effects of large specimens in tests. The fatigue strength and the fatigue life were predicted by relevant models. The prediction of fatigue strength was close to test result, and the prediction of fatigue life was less effective compared with the previous prediction of small size specimen test results.


2010 ◽  
Vol 654-656 ◽  
pp. 2583-2586
Author(s):  
Hee Young Ko ◽  
Kwang Bok Shin ◽  
Jung Seok Kim

In this study, the fatigue characteristics and life of woven glass fabric/epoxy laminate composites applied to railway vehicle were evaluated. The fatigue test was conducted by tension-tension load with stress ratio R of 0.1 and frequency of 5Hz. The material used to fatigue test was two types of woven glass fabric/epoxy laminate composite with and without the reinforcement of carbon/epoxy ply. Also, the fatigue life of woven glass fabric/epoxy laminate composite was compared with that of aluminum 6005 used to the car-body and under-frame structures of railway vehicle. The test results showed that the failure strength and life of woven glass fabric/epoxy laminate composite with the reinforcement of three carbon/epoxy plies had a remarkable improvement in comparison with that of bare specimen without reinforcement.


Author(s):  
D. Rozumek ◽  
Z. Marciniak

The paper presents the fatigue test results including the cracks growth in the composite zirconium-steel subjected to oscillatory bending. Specimens of square cross-section without melted layer and with a melted layer were tested. In the specimens the net ratio of thickness of steel to zirconium layers was h1 : h2 = 2.5 : 1. It was observed that a higher fraction of the intermetallic inclusions near the interface increase the fatigue life. Two different interaction mechanisms between a crack and interface were observed.


2008 ◽  
Vol 33-37 ◽  
pp. 163-168 ◽  
Author(s):  
Jun Deng ◽  
Marcus M.K. Lee ◽  
Pei Yan Huang

The adhesive bonding between the steel beam and carbon fibre reinforced polymer (CFRP) plate is the weakest link and fatigue performance is a major consideration. This paper gives details of a fatigue test programme of a series of small-scale steel beams bonded with a CFRP plate. Two phases of the fatigue life, including crack initiation life and crack propagation life, are considered. Backface-strain technique was applied to monitor crack initiation. An S-N curve was developed from the test results. The curve correlates the maximum principal interfacial stress at the plate end to the crack initiation life. The fatigue limit of the S-N curve was found to be about 30% of the ultimate static failure stress. In accordance with Paris Law, moreover, an equation was developed to predict the number of cycles during the crack propagation. The empirical coefficients of the equation were obtained from the fatigue test results. This equation can correctly predict the crack propagation life. The fatigue load range affects the fatigue life, but its significance is much less than the magnitude of the maximum load in the load range.


Sign in / Sign up

Export Citation Format

Share Document