Face Wrinkling and Core Strength in Sandwich Construction

1960 ◽  
Vol 64 (591) ◽  
pp. 164-167 ◽  
Author(s):  
S. Yusuff

The effect of initial waviness on the wrinkling of faces in sandwich construction is studied. Formulae are derived to determine the failing stress when the faces wrinkle due to failure of the core in tension, compression or shear. The importance of core strength requirements in maintaining surface smoothness is noted. A comparison of theory with experiments is made, and the agreement between the two is found to be reasonably good.A sandwich construction consists of two thin face layers of high-strength material and a thick core layer of lightweight material. The function of the core is twofold. Firstly, it increases the bending rigidity of the faces and second, it stabilises them so that they will not wrinkle until high stress is reached.

Alloy Digest ◽  
1998 ◽  
Vol 47 (3) ◽  

Abstract Alcoa 2024 alloy has good machinability and machined surface finish capability, and is a high-strength material of adequate workability. It has largely superseded alloy 2017 (see Alloy Digest Al-58, August 1974) for structural applications. The alloy has comparable strength to some mild steels. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as machining and surface treatment. Filing Code: AL-346. Producer or source: ALCOA Wire, Rod & Bar Division.


Alloy Digest ◽  
1998 ◽  
Vol 47 (5) ◽  

Abstract Inland DuraSpring is a high-strength microalloyed spring steel for use in high stress coil springs for automobile and light truck suspension systems. This bar product offers significant improvements in tensile strength, fatigue properties, and fracture toughness compared to conventional spring steels. This datasheet provides information on composition, hardness, and tensile properties as well asfracture toughness and fatigue. Filing Code: SA-496. Producer or source: Ispat Inland Inc.


Alloy Digest ◽  
1986 ◽  
Vol 35 (8) ◽  

Abstract BethStar 60 steel plate is a high-strength product with a 60,000 psi minimum yield strength. It contains low carbon and low sulfur and has outstanding toughness, weldability and formability. It provides the design engineer with a an economical high-strength low-alloy (HSLA) grade that can be fabricated readily. Applications include weight-sensitive components subject to high stress such as frames for large off-highway haulers. This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-421. Producer or source: Bethlehem Steel Corporation.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2589
Author(s):  
Jung J. Kim

This study presents an explosion-resistant hybrid system containing a steel slab and a carbon fiber-reinforced polymer (CFRP) frame. CFRP, which is a high-strength material, acts as an impact reflection part. Steel slab, which is a high-ductility material, plays a role as an impact energy absorption part. Based on the elastoplastic behavior of steel, a numerical model is proposed to simulate the dynamic responses of the hybrid system under the air pressure from an explosion. Based on this, a case study is conducted to analyze and identify the optimal design of the proposed hybrid system, which is subjected to an impact load condition. The observations from the case study show the optimal thicknesses of 8.2 and 7 mm for a steel slab and a ϕ100 mm CFRP pipe for the hybrid system, respectively. In addition, the ability of the proposed hybrid system to resist an uncertain explosion is demonstrated in the case study based on the reliability methodology.


1990 ◽  
Vol 196 ◽  
Author(s):  
Jiang Xinggang ◽  
Cui Jianzhong ◽  
Ma Longxiang

ABSTRACTCavity nucleation during superplastic deformation of a high strength aluminium alloy has been studied using a high voltage electron microscope and an optical microscope. The results show that cavities nucleation is due only to superplastic deformation and not to pre-existing microvoids which may be introduced during thermomechanical processing. The main reason for cavity nucleation is the high stress concentration at discontinuties in the plane of the grain boundary due to grain boundary sliding.


2012 ◽  
Vol 524-527 ◽  
pp. 598-603
Author(s):  
Nian Jie Ma ◽  
Zhi Qiang Zhao ◽  
Hua Zhao ◽  
Li Shuai Jiang

In order to solve the serious damage and repeat revision problem of high stress soft rock roadway in deep -950 level of Tangshan coal mine, based on the theory of the maximum stress level, together with the actual measurement of geostress and the laboratory mechanical parameters of rock-core and computer numerical simulation, the high strength combined support technology and supporting parameters are determined and the engineering test has been done. The engineering test results show that the parameter determination of high strength combined support technology, which based on the actual measurement of geostress, can effective solve the support issue of high stress soft rock roadway and provide useful experience for similar engineering problems.


1978 ◽  
Vol 68 (6) ◽  
pp. 1555-1576
Author(s):  
Michel Bouchon

abstract We model the San Fernando earthquake as a propagating rupture in a half-space, using for the slip-time-history on the fault plane analytical expressions which approximate the slip functions of dynamic crack models obtained by Das and Aki (1977a, b). We synthesize the strong ground motions and accelerations at the Pacoima Dam site and compute the teleseismic signals for different models of cracks. Three major featuras of the data–the strong pulse associated with the beginning of the rupture, the high acceleration phase on the Pacoima Dam records, and the presence of ripples on the teleseismic seismograms–which are not compatible with a smooth rupture process, are well explained by a crack with barriers model where the rupture encounters, along the fault plane, barriers or obstacles of high strength materials which may remain unbroken after the passage of the rupture front. A high-stress drop (400 to 500 bars) is required in the hypocentral area to explain the high-amplitude short-duration first pulse of the teleseismic records. This indicates a high level of tectonic stress in the area. A study of the earthquake series following the main shock shows that the aftershocks which took place in the region where major slipping occurred during the earthquake may represent the release of some of the barriers.


Sign in / Sign up

Export Citation Format

Share Document