The Theory of Limit Design Applied to Magnesium Alloy and Aluminium Alloy Structures

1947 ◽  
Vol 51 (438) ◽  
pp. 534-571 ◽  
Author(s):  
Filadelfo Panlilio

This paper is a study of the questions: (1) Are the simplified equations and design procedure in Limit Design that have been developed for application to structural steel construction, applicable without modification to light metal structures? (2) How do the properties of these metals which are different from those of steel affect the application of the theory? Do they offer any advantages? Any disadvantages? (3) What changes in traditional design procedure are warranted? What changes are imperative?No claim is made to a complete solution of the design problem, since each particular structure involves a thousand and one details. Only the broad fundamental philosophy is discussed here. The discussion and conclusions are supplemented with a report of a number of experiments on a few extrusions of some of the more important alloys of magnesium and of aluminium.

Author(s):  
Mulayam Kumar ◽  
Dr. Simant ◽  
Vijay Gupta

The present work has been carried out to study the effect of the varying the load at different materials (Aluminium Alloy 7075-T6, stainless steel 305 and Structural Steel 345w) on deflection. The simply supported beam has been subjected to varying load 5000N - 10000N and cantilever beam has been subjected to varying load 500N-1000N. The result obtained is in form of Directional Deflection and Equivalent Stresses. This analysis is done by the ANSYS Workbench 15.0 software under the static structural analysis further this result has been optimized using TAGUCHI METHOD using MINITAB17.


2020 ◽  
Vol 8 (5) ◽  
pp. 3478-3482

Wind power is a clean energy source that we can rely on for long term use. A wind turbine creates reliable, cost effective pollution free energy. A Horizontal axis wind turbine (HAWT) with three blades having aerofoil profile NACA 2421 is modelled in CAD software and the performance of the turbine is investigated numerically using 3D CFD Ansys 18.1 software at rotor speeds varying from 1 to 7.5 Rad/sec at wind speeds ranging from 8 to 24 m/s. In order to ensure the turbine blades do not fail due to pressure loads and rotational forces, Fluid structure interaction is carried out by importing the surface pressure loads from CFD output on to static structural module, the rotational velocities are also imparted on the blades and FE analysis is carried out to estimate the equivalent von-Mises stress for structural steel as well as aluminium alloy. It is found that aluminium alloy blades are preferable than the structural steel blades. At high rotor speeds, stresses in the structural steel exceeding the yield strength limit. For aluminium alloy the stresses are below the yield strength limit.


Author(s):  
Timothy Tylaska ◽  
Kazem Kazerounian

Abstract In the synthesis of watt I six bar linkage, for finitely separated design positions, or in higher order design, constraint equations become highly nonlinear and transcendental. This paper presents a method to decouple the synthesis problem to the synthesis of two path generator 4-bar linkages. Based on this decoupled system, an explicit design methodology is developed, enabling a three, four, five or six body guidance position Watt I linkage to be designed while the designer has choice of some body pivots and ground pivots. Numerical procedures for higher number of positions are also discussed. The methodology allows the designer to obtain an entire set of solutions to a particular design problem. As a spin off from this work, a methodology is also presented to obtain complete solution sets of four bar path generators capable of passing through up to seven precision points, with a procedure that can be eventually extended to eight and nine path points. Design considerations such as branching and transmission angles are also considered.


2007 ◽  
Vol 16 (02) ◽  
pp. 287-303 ◽  
Author(s):  
SANG-CHURL NAM ◽  
MASAHIDE ABE ◽  
MASAYUKI KAWAMATA

This paper proposes a GA-based design method for two-dimensional (2D) state-space digital filters which satisfy simultaneously the magnitude response and constant group delays. The design problem of 2D state-space digital filters is formulated subject to the constraint that the resultant filters are stable. To apply the genetic algorithm to the design problem, all coefficients of 2D state-space digital filters are encoded into the Gray code representation demonstrating the superior performance to the standard binary one. In addition, a stability test routine is embedded in the design procedure in order to ensure the stability for the resultant filters. A numerical example is given to demonstrate the effectiveness of the proposed method.


Author(s):  
Mine Kaya ◽  
Shima Hajimirza

Abstract Engineering design is usually an iterative procedure where many different configurations are tested to yield a desirable end performance. When the design objective can only be measured by costly operations such as experiments or cumbersome computer simulations, a thorough design procedure can be limited. The design problem in these cases is a high cost optimization problem. Meta model-based approaches (e.g. Bayesian optimization) and transfer optimization are methods that can be used to facilitate more efficient designs. Transfer optimization is a technique that enables using previous design knowledge instead of starting from scratch in a new task. In this work, we study a transfer optimization framework based on Bayesian optimization using Gaussian Processes. The similarity among the tasks is determined via a similarity metric. The framework is applied to a particular design problem of thin film solar cells. Planar multilayer solar cells with different sets of materials are optimized to obtain the best opto-electrical efficiency. Solar cells with amorphous silicon and organic absorber layers are studied and the results are presented.


1962 ◽  
Vol 66 (614) ◽  
pp. 128-129 ◽  
Author(s):  
C. T. Mackenzie ◽  
P.P Benham

A recent paper(1) gives details of an investigation on the low endurance fatigue behaviour of an aluminium-zinc-magnesium alloy (D.T.D. 683). It becomes apparent in subsequent discussion that information on another aluminium alloy to B.S. L65C would satisfy a wider practical interest than the former. Although the equipment used for the earlier work was engaged on another project, it was decided that the latter should be halted for a period to enable a brief programme on low endurance fatigue to be conducted on B.S. L65C material which had previously been kindly provided by the Aluminium Development Association.


1998 ◽  
Vol 37 (11) ◽  
pp. 105-111 ◽  
Author(s):  
Jasna Petrovic ◽  
Jovan Despotovic

Traditional design method for urban drainage systems is based on design storms and its major drawback is that frequencies of peak flows in the system are considered equal to frequencies of design storms. An alternative is to use historical storms with rainfall-runoff models to produce a series of possible flows in the system and their frequencies. The latter approach involves more computations and can be laborious for larger catchments. This paper considers ways to reduce the set of historical storms to be involved in design procedure and yet to lead to realistic flow frequencies. Frequencies obtained by rainfall-runoff simulation at an experimental catchment are compared with frequencies of observed peak flows in the system.


Sign in / Sign up

Export Citation Format

Share Document