Self-adaptive Filters for the Integration of Navigation Data

1983 ◽  
Vol 36 (1) ◽  
pp. 64-73 ◽  
Author(s):  
J. P. Abbott ◽  
C. R. Gent

The traditional non-adaptive Kalman filter includes models of the error characteristics of the navigation aids in use and such filters are very successful, so long as their model assumptions approximate to the true error characteristics sufficiently closely. However, for any filter there will be times when the environment changes and one or several aids will have errors which are not consistent with the assumed error models. It is necessary to consider carefully the sensitivity of the filter to such changes and, where a significant reduction in performance ensues, modifications to the filter are necessary.This paper introduces a Kalman filter which monitors the behaviour of internal variables to detect and characterize any model imperfections. The filter will then adapt its internal model of the environment accordingly. The discussion is restricted to the development of a navigation filter for integrating dead reckoning (EM log and gyrocompass) and Omega data. The principles are the same for any filter and details regarding similar analysis involving the use of other aids, for example Satnav and Decca, have been developed in a similar way.Before implementing any filter it is necessary to understand the behaviour of the measurement errors. For the dead reckoning and Omega aids this behaviour is described in section 2, while section 3 outlines a filter for integrating these aids and introduces the problems of model imperfections.

2019 ◽  
Vol 9 (18) ◽  
pp. 3727
Author(s):  
Chai ◽  
Chen ◽  
Wang

With the popularity of smartphones and the development of microelectromechanical system (MEMS), the pedestrian dead reckoning (PDR) algorithm based on the built-in sensors of a smartphone has attracted much research. Heading estimation is the key to obtaining reliable position information. Hence, an adaptive Kalman filter (AKF) based on an autoregressive model (AR) is proposed to improve the accuracy of heading for pedestrian dead reckoning in a complex indoor environment. Our approach uses an autoregressive model to build a Kalman filter (KF), and the heading is calculated by the gyroscope, obtained by the magnetometer, and stored by previous estimates, then are fused to determine the measurement heading. An AKF based on the innovation sequence is used to adaptively adjust the state variance matrix to enhance the accuracy of the heading estimation. In order to suppress the drift of the gyroscope, the heading calculated by the AKF is used to correct the heading calculated by the outputs of the gyroscope if a quasi-static magnetic field is detected. Data were collected using two smartphones. These experiments showed that the average error of two-dimensional (2D) position estimation obtained by the proposed algorithm is reduced by 40.00% and 66.39%, and the root mean square (RMS) is improved by 43.87% and 66.79%, respectively, for these two smartphones.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4339 ◽  
Author(s):  
Zhong-Chao Deng ◽  
Xiang Yu ◽  
Hong-De Qin ◽  
Zhong-Ben Zhu

In the single-beacon underwater tracking system, vehicles rely on slant range measurements from an acoustic beacon to bound errors accumulated by dead reckoning. Ranges are usually obtained based on a presumed known effective sound velocity (ESV). Since the ESV is difficult to determine accurately, traditional methods suffer from large positioning error. By treating the unknown ESV as a state variable, a novel single-beacon tracking model (the so called “5-sv” model) and an extended Kalman filter (EKF)-based solution method have been discussed to solve the problem of ESV estimation. However, due to the uncertainty of underwater acoustic propagation, the probabilistic characteristics of the ESV uncertainty and acoustic measurement noise are unknown and varying both with time and location. EKF, which runs with presupposed noise parameters, cannot describe the practical noise specifications. To overcome the divergence issue of EKF-based single-beacon tracking methods, this paper proposes an adaptive Kalman filter-based single-beacon tracking algorithm which employs the “5-sv” model as the baseline model. Through numerical examples using simulated and field data, both the filter and smoother results show that while implementing the proposed algorithm, the tracking accuracy can be significantly improved, and the estimated noise parameter agrees well with its true value.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 294 ◽  
Author(s):  
Qigao Fan ◽  
Hai Zhang ◽  
Peng Pan ◽  
Xiangpeng Zhuang ◽  
Jie Jia ◽  
...  

Pedestrian dead reckoning (PDR) systems based on a microelectromechanical-inertial measurement unit (MEMS-IMU) providing advantages of full autonomy and strong anti-jamming performance are becoming a feasible choice for pedestrian indoor positioning. In order to realize the accurate positioning of pedestrians in a closed environment, an improved pedestrian dead reckoning algorithm, mainly including improved step estimation and heading estimation, is proposed in this paper. Firstly, the original signal is preprocessed using the wavelet denoising algorithm. Then, the multi-threshold method is proposed to ameliorate the step estimation algorithm. For heading estimation suffering from accumulated error and outliers, robust adaptive Kalman filter (RAKF) algorithm is proposed in this paper, and combined with complementary filter to improve positioning accuracy. Finally, an experimental platform with inertial sensors as the core is constructed. Experimental results show that positioning error is less than 2.5% of the total distance, which is ideal for accurate positioning of pedestrians in enclosed environment.


2013 ◽  
Vol 62 (2) ◽  
pp. 251-265 ◽  
Author(s):  
Piotr J. Serkies ◽  
Krzysztof Szabat

Abstract In the paper issues related to the design of a robust adaptive fuzzy estimator for a drive system with a flexible joint is presented. The proposed estimator ensures variable Kalman gain (based on the Mahalanobis distance) as well as the estimation of the system parameters (based on the fuzzy system). The obtained value of the time constant of the load machine is used to change the values in the system state matrix and to retune the parameters of the state controller. The proposed control structure (fuzzy Kalman filter and adaptive state controller) is investigated in simulation and experimental tests.


Author(s):  
Lifei Zhang ◽  
Shaoping Wang ◽  
Maria Sergeevna Selezneva ◽  
Konstantin Avenirovich Neysipin

Sign in / Sign up

Export Citation Format

Share Document