Extended Kalman Filter with Input Detection and Estimation for Tracking Manoeuvring Satellites

2019 ◽  
Vol 72 (3) ◽  
pp. 628-648
Author(s):  
Yuzi Jiang ◽  
Hongwei Yang ◽  
Hexi Baoyin ◽  
Pengbin Ma

The technique of tracking a non-cooperative manoeuvring satellite is important for Space Situation Awareness (SSA). However, the classical extended Kalman filter cannot work successfully in this situation. Motivated by this problem, a novel Extended Kalman Filter with Input Detection and Estimation (EKF/IDE) method is proposed in this paper for tracking a non-cooperative satellite with impulsive manoeuvres. The impulsive manoeuvre is modelled as an unknown acceleration without any prior information. An unbiased minimum-variance input and state estimation method is introduced to estimate the manoeuvre acceleration. An approach based on the Mahalanobis distance of the manoeuvre estimate error is proposed for manoeuvre detection. With the impulsive manoeuvre being detected and estimated accurately, an adaptive extended Kalman filter is proposed to estimate the state of the target. An approach of covariance inflation is proposed to deal with the manoeuvre during the unobserved period. Simulations and Monte Carlo experiments are implemented to demonstrate the feasibility and validity of the proposed method. The results of simulations show that the proposed method can accurately detect and estimate unknown impulsive manoeuvres of a non-cooperative satellite. Through the compensation of the estimated manoeuvre, the estimation of position and velocity after the manoeuvre maintains the accuracy of the pre-manoeuvre period, demonstrating the robustness of the proposed method against unknown manoeuvres.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zheng Liu ◽  
Yuan Qiu ◽  
Chunshan Yang ◽  
Jianbo Ji ◽  
Zhenhua Zhao

With the widespread application of electric vehicles, the study of the power lithium-ion battery (LIB) has broad prospects and great academic significance. The state of charge (SOC) is one of the key parts in battery management system (BMS), which is used to provide guarantee for the safe and efficient operation of LIB. To obtain the reliable SOC estimation result under the influence of simple model and measurement noise, a novel estimation method with adaptive feedback compensator is presented in this paper. The simplified dynamic external electrical characteristic of LIB is represented by the one-order Thevenin equivalent circuit model (ECM) and then the ECM parameters are identified by the forgetting factor recursive least squares method (FFRLS). Fully taking into account the feedback effect of terminal voltage innovation, the combination of adaptive extended Kalman filter (AEKF) and innovation vector-based proportional-integral-derivative (PID) feedback is proposed to estimate the LIB SOC. The common single proportional feedback of Kalman filter (KF) is replaced by the innovation vector-based PID feedback, which means that the multiple prior terminal voltage innovation is used in the measurement correction step of KF. The results reveal that the AEKF with PID feedback compensation strategy can improve the SOC estimation performance compared with the common AEKF, and it reveals good robust capability and rapid convergence speed for initial SOC errors. The maximum absolute error and average absolute error for SOC estimation are close to 4% and 2.6%, respectively.


2020 ◽  
pp. 1-17
Author(s):  
Haiying Liu ◽  
Jingqi Wang ◽  
Jianxin Feng ◽  
Xinyao Wang

Abstract Visual–Inertial Navigation Systems (VINS) plays an important role in many navigation applications. In order to improve the performance of VINS, a new visual/inertial integrated navigation method, named Sliding-Window Factor Graph optimised algorithm with Dynamic prior information (DSWFG), is proposed. To bound computational complexity, the algorithm limits the scale of data operations through sliding windows, and constructs the states to be optimised in the window with factor graph; at the same time, the prior information for sliding windows is set dynamically to maintain interframe constraints and ensure the accuracy of the state estimation after optimisation. First, the dynamic model of vehicle and the observation equation of VINS are introduced. Next, as a contrast, an Invariant Extended Kalman Filter (InEKF) is constructed. Then, the DSWFG algorithm is described in detail. Finally, based on the test data, the comparison experiments of Extended Kalman Filter (EKF), InEKF and DSWFG algorithms in different motion scenes are presented. The results show that the new method can achieve superior accuracy and stability in almost all motion scenes.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Heikki Hyyti ◽  
Arto Visala

An attitude estimation algorithm is developed using an adaptive extended Kalman filter for low-cost microelectromechanical-system (MEMS) triaxial accelerometers and gyroscopes, that is, inertial measurement units (IMUs). Although these MEMS sensors are relatively cheap, they give more inaccurate measurements than conventional high-quality gyroscopes and accelerometers. To be able to use these low-cost MEMS sensors with precision in all situations, a novel attitude estimation algorithm is proposed for fusing triaxial gyroscope and accelerometer measurements. An extended Kalman filter is implemented to estimate attitude in direction cosine matrix (DCM) formation and to calibrate gyroscope biases online. We use a variable measurement covariance for acceleration measurements to ensure robustness against temporary nongravitational accelerations, which usually induce errors when estimating attitude with ordinary algorithms. The proposed algorithm enables accurate gyroscope online calibration by using only a triaxial gyroscope and accelerometer. It outperforms comparable state-of-the-art algorithms in those cases when there are either biases in the gyroscope measurements or large temporary nongravitational accelerations present. A low-cost, temperature-based calibration method is also discussed for initially calibrating gyroscope and acceleration sensors. An open source implementation of the algorithm is also available.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3809 ◽  
Author(s):  
Yushi Hao ◽  
Aigong Xu ◽  
Xin Sui ◽  
Yulei Wang

Recently, the integration of an inertial navigation system (INS) and the Global Positioning System (GPS) with a two-antenna GPS receiver has been suggested to improve the stability and accuracy in harsh environments. As is well known, the statistics of state process noise and measurement noise are critical factors to avoid numerical problems and obtain stable and accurate estimates. In this paper, a modified extended Kalman filter (EKF) is proposed by properly adapting the statistics of state process and observation noises through the innovation-based adaptive estimation (IAE) method. The impact of innovation perturbation produced by measurement outliers is found to account for positive feedback and numerical issues. Measurement noise covariance is updated based on a remodification algorithm according to measurement reliability specifications. An experimental field test was performed to demonstrate the robustness of the proposed state estimation method against dynamic model errors and measurement outliers.


Sign in / Sign up

Export Citation Format

Share Document