Future ant invasions in France

2014 ◽  
Vol 41 (2) ◽  
pp. 217-228 ◽  
Author(s):  
CLEO BERTELSMEIER ◽  
FRANCK COURCHAMP

SUMMARYAnts are among the worst invasive species, and can have tremendous negative impacts on native biodiversity, agriculture, estates, property and human health. Invasive ants are extremely difficult to control, and thus early detection is essential to prevent ant invasions, in particular through surveillance efforts at ports of entry. This paper assesses the potential distribution of 14 of the worst invasive ant species in France, under current and future climatic conditions. Consensus species distribution models, using five different modelling techniques, three global climate models and two CO2 emission scenarios, indicated that France presented suitable areas for 10/14 species, including five listed on the Invasive Species Specialist Group's selection of the world's 100 worst invasive species. Among these 10 species, eight were predicted to increase their potential range with climate change. Areas with the highest concentration of potential invaders were mainly located along the coastline, especially in the south-west of France, but all departments appeared to be climatically suitable for at least two invasive species. A ranking of climatic suitability per species for 17 major airports and 14 maritime ports indicated that the ports of entry with the highest suitability were located in Biarritz, Toulon and Nice, and the species with the greatest potential distribution in France were Lasius neglectus and Linepithema humile, followed by Solenopsis richteri, Pheidole megacephala and Wasmannia auropunctata.

Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 5 ◽  
Author(s):  
Ya Zou ◽  
Linjing Zhang ◽  
Xuezhen Ge ◽  
Siwei Guo ◽  
Xue Li ◽  
...  

The poplar and willow borer, Cryptorhynchus lapathi (L.), is a severe worldwide quarantine pest that causes great economic, social, and ecological damage in Europe, North America, and Asia. CLIMEX4.0.0 was used to study the likely impact of climate change on the potential global distribution of C. lapathi based on existing (1987–2016) and predicted (2021–2040, 2041–2080, and 2081–2100) climate data. Future climate data were simulated based on global climate models from Coupled Model Inter-comparison Project Phase 5 (CMIP5) under the RCP4.5 projection. The potential distribution of C. lapathi under historical climate conditions mainly includes North America, Africa, Europe, and Asia. Future global warming may cause a northward shift in the northern boundary of potential distribution. The total suitable area would increase by 2080–2100. Additionally, climatic suitability would change in large regions of the northern hemisphere and decrease in a small region of the southern hemisphere. The projected potential distribution will help determine the impacts of climate change and identify areas at risk of pest invasion in the future. In turn, this will help design and implement effective prevention measures for expanding pest populations, using natural enemies, microorganisms, and physical barriers in very favorable regions to impede the movement and oviposition of C. lapathi.


1992 ◽  
Vol 68 (4) ◽  
pp. 472-475 ◽  
Author(s):  
D. P. Fowler ◽  
J. A. Loo-Dinkins

Most global climate models predict a rapid increase in temperature over the next few decades as a result of elevated levels of carbon dioxide and other greenhouse gases. Although the resolution of the existing models is not sufficient to predict specific weather patterns for the Maritimes region, the predicted rate of change is such that forest tree populations will be unable to adapt fully to future conditions. If conventional rotation lengths are planned, presently adapted seedlings will be poorly adapted to the new conditions by the time of harvest. A three-pronged approach is proposed to mitigate the impact of climate change in the Maritimes: development of short rotation clonal forestry, testing and breeding for stability of genotypes over a range of climatic conditions, and collection, storage, and testing of native and non-native materials of potential value.


1993 ◽  
Vol 23 (2) ◽  
pp. 229-233 ◽  
Author(s):  
Elizabeth A. Jones ◽  
David D. Reed ◽  
Glenn D. Mroz ◽  
Hal O. Liechty ◽  
Peter J. Cattelino

Widespread paper birch (Betulapapyrifera Marsh.) mortality associated with the activity of the bronze birch borer (Agrilusanxius Gory) was observed across northern Michigan in 1991. This mortality occurred at two study sites on which paper birch growth has been intensively monitored since 1985. Recent warmer than normal growing seasons and lower than normal moisture availability are statistically associated with a reduction in annual diameter growth. On one study site 62% of the paper birch study trees were dead and 13% were visibly declining; on the other study site, although no trees were dead, 25% of the paper birch study trees were visibly declining. Growth reductions since 1985 suggest that the species was under climatic stress, making it more vulnerable to pest–pathogen activity. The evidence of the role of climatic conditions acting as a precursor to decline and mortality on these sites is of serious concern given recent projections of warmer temperatures and lower precipitation for this region by several global-climate models.


2019 ◽  
Author(s):  
Catarina Cavaleiro ◽  
Antje H. L. Voelker ◽  
Heather Stoll ◽  
Karl-Heinz Baumann ◽  
Michal Kucera

Abstract. Coccolithophores contribute significantly to the marine primary productivity and play a unique role in ocean biogeochemistry by using carbon for photosynthesis (biological pump) and also for calcification (carbonate pump). Despite the importance of including coccolithophores in global climate models to allow better predictions of the climate system's responses to planetary change, highly uncertain coccolithophore paleoproductivity past reconstructions mostly relied on proxies dependent on accumulation and sedimentation rates, and preservation conditions. In this study we used an independent proxy, based on the coccolith fraction (CF) Sr/Ca ratio, to reconstruct coccolithophore productivity. We used the marine sediment core MD03-2699 from the western Iberian margin (IbM), spanning the glacial/interglacial cycles of Marine Isotope Stage (MIS) 12 to MIS 9. We found that IbM coccolithophore productivity was controlled by changes in the oceanographic conditions, such as in SST, the competition for nutrients with other phytoplankton groups and insolation. Long-term coccolithophore productivity was primarily affected by variations in the dominant water mass. Polar and subpolar surface waters during glacial substages were associated with decreased coccolithophore productivity, with strongest productivity minima being concomitant with Heinrich-type events (HtE). Subtropical, nutrient-poorer waters during interglacial substages, i.e. MIS 11c, might have lead to intensified competition for nutrients with diatoms resulting in intermediate levels of coccolithophore productivity. The transition from interglacial to glacial substages was likely associated with increasing presence of nutrient-richer waters, possibly with lower silica content than riverine discharges and mostly fed by either upwelling or surface waters of northern origin. This minimized the competition with diatoms and coccolithophores reached their productivity maxima. Climatic conditions during colder periods forced coccolithophores to change their phenology contributing to the dissonance between the CF Sr/Ca derived coccolithophore productivity and nannofossil accumulation rate and total alkenone flux, which is interpreted as a consequence of the narrowing yearly time-window for coccolithophore productivity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yujia Qin ◽  
Yuan Zhang ◽  
Anthony R. Clarke ◽  
Zihua Zhao ◽  
Zhihong Li

Fruit flies are a well-known invasive species, and climate-based risk modeling is used to inform risk analysis of these pests. However, such research tends to focus on already well-known invasive species. This paper illustrates that appropriate risk modeling can also provide valuable insights for flies which are not yet “on the radar.” Carpomya pardalina is a locally important cucurbit-infesting fruit fly of western and central Asia, but it may present a risk to other temperate countries where melons are grown. MaxEnt models were used to map the risk area for this species under historical and future climate conditions averaged from three global climate models under two shared socio-economic pathways in 2030 and 2070 from higher climate sensitivity models based on the upcoming 2021 IPCC sixth assessment report. The results showed that a total of 47.64% of the world’s land mass is climatically suitable for the fly; it could establish widely around the globe both under current and future climates with host availability. Our MaxEnt modeling highlights particularly that Western China, Russia, and other European countries should pay attention to this currently lesser-known melon fly and the melons exported from the present countries. The current and expanding melon trade could offer direct invasion pathways to those regions. While this study offers specific risk information on C. pardalina, it also illustrates the value of applying climate-based distribution modeling to species with limited geographic distributions.


2007 ◽  
Vol 31 (3) ◽  
pp. 287-312 ◽  
Author(s):  
Andrea Meyn ◽  
Peter S. White ◽  
Constanze Buhk ◽  
Anke Jentsch

Large, infrequent fires (LIFs) can have substantial impacts on both ecosystems and the economy. To better understand LIFs and to better predict the effects of human management and climate change on their occurrence, we must first determine the factors that produce them. Here, we review local and regional literature investigating the drivers of LIFs. The emerging conceptual model proposes that ecosystems can be typified based on climatic conditions that determine both fuel moisture and fuel amount. The concept distinguishes three ecosystem types: (1) biomass-rich, rarely dry ecosystems where fuel moisture rather than fuel amount limits LIFs; (2) biomass-poor, at least seasonally dry ecosystems where fuel amount rather than fuel moisture limits LIFs; and (3) biomass-poor, rarely dry ecosystems where both fuel amount and fuel moisture limit the occurrence of LIFs. Our main goal in this paper is to discuss the drivers of LIFs and the three mentioned ecosystem types in a global context. Further, we will discuss the drivers that are not included within the `fuels' versus `climate' discussion. Finally, we will address the question: what kinds of additional information are needed if models predicting LIFs are to be coupled with global climate models? As with all generalizations, there are local deviations and modifications due to processes such as disturbance interaction or human impact. These processes tend to obscure the general patterns of the occurrence of LIFs and are likely to cause much of the observed controversy and confusion in the literature.


2021 ◽  
Author(s):  
Branimir Omazić ◽  
Maja Telišman Prtenjak ◽  
Ivan Prša ◽  
Marko Karoglan

<p>Since changes in temperatures and precipitation significantly affect the biosphere, viticulture as an important economic branch in the moderate latitudes (e.g., mainly between 35°N and 55°N) is strongly influenced by climate change. The most commonly analysed/modelled phenological phases of grapevines are budburst (beginning of grapevine seasonal growth), flowering (crucial for the reproductive cycle) and veraison (initiation of the ripening). Resent studies indicate that budburst is greatly regulated by temperature. Due to climate change and temperature increase, budburst dates show trends in earlier occurrences at several available stations throughout Croatia which increases the vulnerability of the grapevine to the spring frost.</p><p>The aim of this study is to determine trends and changes in budburst date, their statistical characteristics at available stations in period 1961-2020 in Croatia. We focus on four grapevine varieties, two white (Graševina and Chardonnay) and two red (Merlot and Plavac Mali) and performance of statistical models (GDD, Riou’s model and BRIN model) that predict budburst dates in the present climate. For this purpose an effect of the dormancy period and base temperature on the simulated budburst date have been explored. The study is further extended to future climatic conditions using statistical and numerical climate models. Therefore, a daily output from three CORDEX Regional Climate Models’ (RCMs) simulations (CLMcom-CCLM4-8-17, SMHI-RCA4, CNRM-ALADIN5.3) for Croatian domain are used. All RCMs are forced by Global Climate Models (GCMs) with a moderate (RCP4.5) and a high-end (RCP8.5) green-house gass (GHG) scenario(s) and all the simulations have horizontal grid spacing of 0.11°. Results indicate further earlier appearance of budburst regardless of varieties.</p>


2011 ◽  
Vol 41 (2) ◽  
pp. 412-424 ◽  
Author(s):  
Michael S. Watt ◽  
Rebecca J. Ganley ◽  
Darren J. Kriticos ◽  
Lucy K. Manning

Globally, pitch canker and Dothistroma needle blight are two of the most important diseases of pine species caused, respectively, by the pathogens Fusarium circinatum Nirenberg & O’Donnell and Dothistroma spp. ( Dothistroma septosporum (Dorog.) Morelet and Dothistroma pini Hulbary). The potential distributions of these two diseases under current global climate have previously been modelled and contrast strongly with each other. In this study, we used the process-based niche model CLIMEX to estimate the potential distribution of both diseases in the 2080s under six scenarios that include three contrasting global climate models, each with moderate and high CO2 emissions. For both diseases, under the future climate scenarios, there was a global reduction in the potentially suitable area. Among the three global climate models, this reduction ranged from 11% to 22% for Dothistroma needle blight and from 39% to 58% for pitch canker. The projected potential ranges of both diseases were significantly reduced for Africa, South America, and Australia. In Asia and North America, substantial reductions in potential area were generally projected for pitch canker, while little change to moderate levels of expansion were projected for Dothistroma needle blight. For Europe and New Zealand, expansion of suitable climate was projected under all climate change scenarios for both diseases.


2011 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Silvio Gualdi ◽  
Antonella Sanna ◽  
Edoardo Bucchignani ◽  
Myriam Montesarchio

Sign in / Sign up

Export Citation Format

Share Document