Using a qualitative model to explore the impacts of ecosystem and anthropogenic drivers upon declining marine survival in Pacific salmon

2017 ◽  
Vol 45 (3) ◽  
pp. 278-290 ◽  
Author(s):  
KATHRYN L. SOBOCINSKI ◽  
CORREIGH M. GREENE ◽  
MICHAEL W. SCHMIDT

SUMMARYCoho salmon (Oncorhynchus kisutch), Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) in Puget Sound and the Strait of Georgia have exhibited declines in marine survival over the last 40 years. While the cause of these declines is unknown, multiple factors, acting cumulatively or synergistically, have likely contributed. To evaluate the potential contribution of a broad suite of drivers on salmon survival, we used qualitative network modelling (QNM). QNM is a conceptually based tool that uses networks with specified relationships between the variables. In a simulation framework, linkages are weighted and then the models are subjected to user-specified perturbations. Our network had 33 variables, including: environmental and oceanographic drivers (e.g., temperature and precipitation), primary production variables, food web components from zooplankton to predators and anthropogenic impacts (e.g., habitat loss and hatcheries). We included salmon traits (survival, abundance, residence time, fitness and size) as response variables. We invoked perturbations to each node and to suites of drivers and evaluated the responses of these variables. The model showed that anthropogenic impacts resulted in the strongest negative responses in salmon survival and abundance. Additionally, feedbacks through the food web were strong, beginning with primary production, suggesting that several food web variables may be important in mediating effects on salmon survival within the system. With this model, we were able to compare the relative influence of multiple drivers on salmon survival.

<em>Abstract.</em>—The Washington Department of Fish and Wildlife and Tribal co-managers are using the Ecosystem Diagnosis and Treatment (EDT) model to identify the spatial and temporal habitat limits of salmon populations and predict the effects of proposed habitat restoration projects for ESA-listed Chinook salmon <em>Oncorhynchus tshawytscha </em>in two Puget Sound watersheds. The collaborative, iterative process focused on habitat-based population models for the Dungeness and Dosewallips watersheds. Workshops were held to develop quantitative characteristics of current, historic, hypothetical properly functioning, and future habitat conditions. The model predicted salmon populations in the watersheds for each set of habitat conditions. Recovery targets were based on the predicted populations for historic and hypothetical properly functioning conditions. Future populations were modeled using projected habitat conditions with individual habitat restoration and protection actions already proposed and combinations of these actions. Populations resulting from further habitat degradation were estimated using the effects of projected human population growth on habitat.


1981 ◽  
Vol 38 (12) ◽  
pp. 1636-1656 ◽  
Author(s):  
W. E. Ricker

Of the five species of Pacific salmon in British Columbia, chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) are harvested during their growing seasons, while pink salmon (O. gorbuscha), chum salmon (O. keta), and sockeye salmon (O. nerka) are taken only after practically all of their growth is completed. The size of the fish caught, of all species, has decreased, but to different degrees and over different time periods, and for the most part this results from a size decrease in the population. These decreases do not exhibit significant correlations with available ocean temperature or salinity series, except that for sockeye lower temperature is associated with larger size. Chinook salmon have decreased greatly in both size and age since the 1920s, most importantly because nonmaturing individuals are taken by the troll fishery; hence individuals that mature at older ages are harvested more intensively, which decreases the percentage of older ones available both directly and cumulatively because the spawners include an excess of younger fish. Other species have decreased in size principally since 1950, when the change to payment by the pound rather than by the piece made it profitable for the gill-netters to harvest more of the larger fish. Cohos and pinks exhibit the greatest decreases, these being almost entirely a cumulative genetic effect caused by commercial trolls and gill nets removing fish of larger than average size. However, cohos reared in the Strait of Georgia have not decreased in size, possibly because sport trolling has different selection characteristics or because of the increase in the hatchery-reared component of the catch. The mean size of chum and sockeye salmon caught has changed much less than that of the other species. Chums have the additional peculiarity that gill nets tend to take smaller individuals than seines do and that their mean age has increased, at least between 1957 and 1972. That overall mean size has nevertheless decreased somewhat may be related to the fact that younger-maturing individuals grow much faster than older-maturing ones; hence excess removal of the smaller younger fish tends to depress growth rate. Among sockeye the decrease in size has apparently been retarded by an increase in growth rate related to the gradual cooling of the ocean since 1940. However, selection has had two important effects: an increase in the percentage of age-3 "jacks" in some stocks, these being little harvested, and an increase in the difference in size between sockeye having three and four ocean growing seasons, respectively.Key words: Pacific salmon, age changes, size changes, fishery, environment, selection, heritability


1995 ◽  
Vol 52 (7) ◽  
pp. 1376-1384 ◽  
Author(s):  
Robert H. Devlin ◽  
Timothy Y. Yesaki ◽  
Edward M. Donaldson ◽  
Shao Jun Du ◽  
Choy-Leong Hew

Transgenic Pacific salmon have been produced by microinjection of a DNA construct consisting of chinook salmon (Oncorhynchus tshawytscha) growth hormone sequences driven by an ocean pout (Macrozoarces americanus) antifreeze protein promoter. This construct was retained in approximately 4% of fish derived from injected eggs, and resulted in dramatic enhancement of growth relative to controls. For coho salmon (O. kisutch) at 15 months of age, the average size of transgenic fish was more than 10-fold that of controls, with the largest fish more than 30-fold larger than nontransgenic siblings. Dramatic growth enhancement was also observed in transgenic rainbow trout (O. mykiss), cutthroat trout (O. clarki), and chinook salmon using this same gene construct. Transgenic coho salmon underwent precocious parr–smolt transformation during their first fall, approximately 6 months in advance of their nontransgenic siblings. At 2 years of age, five male transgenic coho salmon became sexually mature, and four of these transmitted the gene construct to sperm, the negative fish being transgenic in blood but not fin tissue. These results show that while some fish are mosaic for the gene construct in different tissues, most are transgenic in both germline and somatic tissue.


1998 ◽  
Vol 55 (2) ◽  
pp. 318-327 ◽  
Author(s):  
Peter S Rand ◽  
Donald J Stewart

Estimates of production and predation rates from bioenergetic models of chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), and lake trout (Salvelinus namaycush) suggest a long-term decline in their gross conversion efficiency (gross production/prey consumption) and the gross production to biomass ratio in Lake Ontario during 1978-1994. The former pattern was caused primarily by a declining trend in adult alewife (Alosa pseudoharengus) energy density during 1978-1985; the latter pattern resulted from reductions in growth rates (coho salmon) and a buildup of the older age-classes in the population (lake trout) over time. Model results suggest that over 100 and 25% of the annual production of adult alewife and rainbow smelt (Osmerus mordax), respectively, was consumed by salmonines during 1990 in Lake Ontario; hence, we claim that recent observations of reduced salmonine growth in Lake Ontario may be a result of prey limitation. Energy transfer from primary production to salmonines appeared to be more efficient in Lake Ontario than in Lake Michigan, probably due to higher stocking levels per unit area and higher densities of preferred prey fish in Lake Ontario. Through separate analyses, we arrived at conflicting conclusions concerning the sustainability of the food web configuration in Lake Ontario during 1990.


2017 ◽  
Vol 74 (2) ◽  
pp. 191-201 ◽  
Author(s):  
Kyla M. Jeffrey ◽  
Isabelle M. Côté ◽  
James R. Irvine ◽  
John D. Reynolds

Body size can sometimes change rapidly as an evolutionary response to selection or as a phenotypic response to changes in environmental conditions. Here, we revisit a classic case of rapid change in body size of five species of Pacific salmon (Oncorhynchus spp.) caught in Canadian waters, with a six-decade analysis (1951–2012). Declines in size at maturity of up to 3 kg in Chinook (Oncorhynchus tshawytscha) and 1 kg in coho salmon (Oncorhynchus kisutch) during the 1950s and 1960s were later reversed to match or exceed earlier sizes. In contrast, there has been little change in sockeye salmon (Oncorhynchus nerka) sizes and initial declines in pink (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) sizes have halted. Biomass of competing salmon species contributed to changes in size of all five species, and ocean conditions, as reflected by the North Pacific Gyre Oscillation and the Multivariate ENSO (El Niño – Southern Oscillation) indices, explained variation in four of the species. While we have identified a role of climate and density dependence in driving salmon body size, any additional influence of fisheries remains unclear.


2011 ◽  
Vol 68 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Elisabeth J Duffy ◽  
David A Beauchamp

We examined the effect of early marine entry timing and body size on the marine (smolt-to-adult) survival of Puget Sound Chinook salmon ( Oncorhynchus tshawytscha ). We used data from coded wire tag release groups of hatchery Chinook salmon to test whether hatchery release date, release size, and size in offshore waters in July and September influenced marine survival. Marine survival was most strongly related to the average body size in July, with larger sizes associated with higher survivals. This relationship was consistent over multiple years (1997–2002), suggesting that mortality after July is strongly size-dependent. Release size and date only slightly improved this relationship, whereas size in September showed little relationship to marine survival. Specifically, fish that experienced the highest marine survivals were released before 25 May and were larger than 17 g (or 120 mm fork length) by July. Our findings highlight the importance of local conditions in Puget Sound (Washington, USA) during the spring and summer, and suggest that declines in marine survival since the 1980s may have been caused by reductions in the quality of feeding and growing conditions during early marine life.


2014 ◽  
Vol 71 (1) ◽  
pp. 162-180 ◽  
Author(s):  
James P. Meador

This study examined the rate of survival for hatchery-reared, ocean-type juvenile Chinook salmon (Oncorhynchus tshawytscha) to the adult life stage in relation to contamination status for estuaries where they temporarily reside. The hypothesis tested here is that juvenile Chinook from Puget Sound (Washington, USA) area hatcheries exhibit differential survival as categorized by the state of contamination in their respective natal estuaries. Data were examined from 20 hatcheries that released fish to 14 local estuaries in the Greater Puget Sound area over 37 years (1972–2008). A parallel analysis was also conducted for coho salmon (Oncorhynchus kisutch) outmigrating from many of the same hatcheries. For all years combined, juvenile Chinook transiting contaminated estuaries exhibited an overall rate of survival that was 45% lower than that for Chinook moving through uncontaminated estuaries, which was confirmed when tested year by year. The results for coho originating from the same hatcheries and sharing a similar marine distribution indicated no substantial differences among estuaries. These observations have important implications for wild juvenile Chinook that spend more time in the estuary compared with hatchery-reared fish.


2017 ◽  
Vol 115 (4) ◽  
pp. 544-555 ◽  
Author(s):  
Anna N. Kagley ◽  
Joseph M. Smith ◽  
Kurt L. Fresh ◽  
Kinsey E. Frick ◽  
Thomas P. Quinn

2018 ◽  
Author(s):  
David W. Welch ◽  
Aswea D. Porter ◽  
Erin L. Rechisky

AbstractAccelerating decreases in survival are evident for northern Hemisphere salmon populations. We collated smolt survival and smolt-to-adult (marine) survival data for all regions of the Pacific coast of North America excluding California to examine the forces shaping salmon returns. A total of 3,055 years of annual survival estimates were available for Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss). This dataset provides a fundamentally different perspective on west coast salmon conservation problems from the previously accepted view. We found that marine survival collapsed over the past half century by a factor of at least 4-5 fold to similar low levels (~1%) for most regions of the west coast. The size of the decline is too large to be compensated by freshwater habitat remediation or cessation of harvest, and too large-scale to be attributable to specific anthropogenic impacts such as dams in the Columbia River or salmon farming in British Columbia. Within the Columbia River, both smolt survivals during downstream migration in freshwater and adult return rates (SARs) of Snake River populations, often singled out as exemplars of poor survival, appear unexceptional and are in fact higher than estimates reported from other regions of the west coast lacking dams. Formal Columbia River rebuilding targets of 2-6% SARs may therefore be unachievable if regions with nearly pristine freshwater conditions also fail to achieve these targets. Finally, we present case studies demonstrating that the historical response to evidence that the salmon problems are primarily ocean-related was to re-emphasize freshwater actions and to stop work on ocean issues. With ocean temperatures forecast to increase far further, the failure of management to identify the drivers of salmon collapse and respond appropriately suggest that the future of most west coast salmon populations is bleak.


Sign in / Sign up

Export Citation Format

Share Document