Suppression of γ’ Precipitation in a Laser-Melted Nickel-Base Alloy

Author(s):  
J. M. Walsh ◽  
J. C. Whittles ◽  
B. H. Kear ◽  
E. M. Breinan

Conventionally cast γ’ precipitation hardened nickel-base superalloys possess well-defined dendritic structures and normally exhibit pronounced segregation. Splat quenched, or rapidly solidified alloys, on the other hand, show little or no evidence for phase decomposition and markedly reduced segregation. In what follows, it is shown that comparable results have been obtained in superalloys processed by the LASERGLAZE™ method.In laser glazing, a sharply focused laser beam is traversed across the material surface at a rate that induces surface localized melting, while avoiding significant surface vaporization. Under these conditions, computations of the average cooling rate can be made with confidence, since intimate contact between the melt and the self-substrate ensures that the heat transfer coefficient is reproducibly constant (h=∞ for perfect contact) in contrast to the variable h characteristic of splat quenching. Results of such computations for pure nickel are presented in Fig. 1, which shows that there is a maximum cooling rate for a given absorbed power density, corresponding to the limiting case in which melt depth approaches zero.

1989 ◽  
Vol 4 (1) ◽  
pp. 44-49 ◽  
Author(s):  
S. A. Myers ◽  
C. C. Koch

There is controversy in the literature regarding the existence of the metastable γ′ phase with an ordered Ll2 structure in rapidly solidified Fe–Ni–Al–C alloys. In this study, the quench rate–metastable structure dependence was examined in the Fe–20Ni–8Al–2C (weight percent) alloy. The effect of silicon on the kinetics of phase formation was studied by adding two weight percent silicon to a base alloy of Fe–20Ni–8Al–2C. Samples were rapidly solidified in an arc hammer apparatus and examined by transmission electron microscopy. In the Fe–20Ni–8Al–2C alloy, the nonequilibrium γ′ and γ phases were found in foils 65 to 100 μm thick. At higher quench rates, i.e., thinner samples, the matrix was observed to be disordered fcc γ with K-carbide precipitates. Samples containing silicon were found to have a matrix composed of γ′ and γ structures when the foils were thicker than 40 μm. At higher quench rates, the matrix was disordered fcc γ with K-carbide precipitates. The nonequilibrium γ′ and γ structures are present in samples with or without silicon, but are observed at higher cooling rates with the addition of silicon. This sensitivity to cooling rate and composition in resulting metastable structures may explain the differences reported in the literature for these rapidly solidified materials.


Author(s):  
E. L. Hall ◽  
M. R. Jackson

The temperature capability of nickel-base superalloys which are used in aircraft turbines may be able to be extended if novel microstructures can be produced in these materials by rapid solidification. The primary goal of these efforts is to achieve a fine dispersion of small precipitates which are stable at high temperature in the alloys. One class of alloys which seem particularly promising are the eutectic superalloys, which solidify via a eutectic reaction in which a γ- γ’ matrix containing MC carbides is formed. For this investigation, alloys which contained either Ta, Ti, or V as the primary carbide former were studied. In all cases, the base alloy consisted of Ni-4%Co-4%Cr-5.5%Al-2%Mo-3%W-1.5%Re-0.3%C in weight percent. The alloys additionally contained either 9% Ta, 5.5% Ti, or 4.5% V (subsequently referred to as alloys A, B, and C, respectively). The alloys were rapidly solidified by melt-spinning in vacuum.


2007 ◽  
Vol 16 (4) ◽  
pp. 541-547
Author(s):  
Yasuhiro Hoshiyama ◽  
Kentaro Hirano ◽  
Kenji Murakami ◽  
Hidekazu Miyake

Author(s):  
L. S. Lin ◽  
C. C. Law

Inconel 718, a precipitation hardenable nickel-base alloy, is a versatile high strength, weldable wrought alloy that is used in the gas turbine industry for components operated at temperatures up to about 1300°F. The nominal chemical composition is 0.6A1-0.9Ti-19.OCr-18.0Fe-3Mo-5.2(Cb + Ta)- 0.1C with the balance Ni (in weight percentage). The physical metallurgy of IN 718 has been the subject of a number of investigations and it is now established that hardening is due, primarily, to the formation of metastable, disc-shaped γ" an ordered body-centered tetragonal structure (DO2 2 type superlattice).


Author(s):  
P. A. Molian ◽  
K. H. Khan ◽  
W. E. Wood

In recent years, the effects of chromium on the transformation characteristics of pure iron and the structures produced thereby have been extensively studied as a function of cooling rate. In this paper, we present TEM observations made on specimens of Fe-10% Cr and Fe-20% Cr alloys produced through laser surface alloying process with an estimated cooling rate of 8.8 x 104°C/sec. These two chromium levels were selected in order to study their phase transformation characteristics which are dissimilar in the two cases as predicted by the constitution diagram. Pure iron (C<0.01%, Si<0.01%, Mn<0.01%, S=0.003%, P=0.008%) was electrodeposited with chromium to the thicknesses of 40 and 70μm and then vacuum degassed at 400°F to remove the hydrogen formed during electroplating. Laser surface alloying of chromium into the iron substrate was then performed employing a continuous wave CO2 laser operated at an incident power of 1200 watts. The laser beam, defocussed to a spot diameter of 0.25mm, scanned the material surface at a rate of 30mm/sec, (70 ipm).


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1993 ◽  
Vol 42 (7) ◽  

Abstract DELORO 716 PM is a nickel-base alloy recommended for handling conditions of wear, erosion, heat and corrosion when impact is also a consideration. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance and wear resistance as well as machining and joining. Filing Code: Ni-435. Producer or source: Deloro Stellite Inc.


Alloy Digest ◽  
1965 ◽  
Vol 14 (12) ◽  

Abstract Sanicro 71 is a nickel-base alloy having good resistance to stress-corrosion, oxidation and creep at elevated temperatures. It is recommended for nuclear power reactor heat exchanger tubes, aircraft turbojet engines and for equipment in the textile, plastic, and chemical industries. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-108. Producer or source: Sandvik.


Alloy Digest ◽  
1965 ◽  
Vol 14 (11) ◽  

Abstract MAR-M Alloy 200 is a nickel-base alloy designed primarily as a cast turbine blade material which retains useful strength up to 1900 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance as well as heat treating and joining. Filing Code: Ni-107. Producer or source: Martin Metals Company.


Sign in / Sign up

Export Citation Format

Share Document