A Micro-diffusion Technique for Visualizing Nucleic Acid Molecules

Author(s):  
H. D. Mayor ◽  
L. E. Jordan

Contour lengths, molecular weights, and topological parameters of single molecules of nucleic acids can be studied accurately by electron microscopy. However, specialized equipment and highly purified samples of DNA or RNA in an amount of 10-100 μgm have been required. We have developed a simple micro-diffusion technique which uses less than 0.01 (μgm of nucleic acid. Droplets containing the nucleic acid are placed on a clean teflon sheet. Cytochrome C powder is added by needle to form a monofilm. After 20-30 minutes diffusion time, there is usually enough material attached for the film to be picked up on a suitable specimen grid, shadow-cast or stained, and examined in the electron microscope. Each droplet provides material for a single observation, but experiments may be carried out contiguously on the sheet.The method has been developed for viral nucleic acids, but can also be applied to solutions of virus particles where the genomes can be released by osmotic shock or by other physical procedures. Less than 1010 particles per ml are required for this modification. Examples of nucleic acids liberated from papovaviruses, SV40, rabbit papilloma, human papilloma, and from adeno-associated satellite virus will be presented. Viral nucleic acids (DNAs from SV40 and adenovirus, RNA from bacteriophage R17) prepared by conventional techniques will also be shown.

Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


2014 ◽  
Vol 47 (3) ◽  
pp. 948-955 ◽  
Author(s):  
Julia Viladoms ◽  
Gary N. Parkinson

Crystallization of nucleic acids remains a bottleneck to their structural characterization by X-ray crystallography. A new 96-well-format initial screen for nucleic acids, called HELIX, has been developed at UCL School of Pharmacy, London, on the basis of a detailed analysis of the crystallization conditions from 1450 nucleic acid structures deposited in the Protein Data Bank (PDB), combined with observations and experience acquired in the authors' nucleic acids crystallography laboratory during the crystallization of DNA/RNA quadruplexes and ligand complexes. Despite using traditional buffers, precipitants and salts, the resulting modular screen is designed to offer a variety of approaches to enhance successful crystallization of oligonucleotides with a diverse range of topologies, sequences and molecular weights. HELIX includes a set of 24 conditions divided into four sets that can be mixed (inter- and intra-set) to provide a customizable orthogonal screening tool for experienced users, termed VariX. Additionally, mindful of synchrotron anomalous data collection, cacodylate buffers are avoided in the formulations and an optimized cryocrystallization module is included. This article reviews the crystallization trends and data derived from the PDB and discusses the HELIX screen layout, formulation and results from in-house crystallization trials.


Author(s):  
Stephen D. Jett

The electrophoresis gel mobility shift assay is a popular method for the study of protein-nucleic acid interactions. The binding of proteins to DNA is characterized by a reduction in the electrophoretic mobility of the nucleic acid. Binding affinity, stoichiometry, and kinetics can be obtained from such assays; however, it is often desirable to image the various species in the gel bands using TEM. Present methods for isolation of nucleoproteins from gel bands are inefficient and often destroy the native structure of the complexes. We have developed a technique, called “snapshot blotting,” by which nucleic acids and nucleoprotein complexes in electrophoresis gels can be electrophoretically transferred directly onto carbon-coated grids for TEM imaging.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


The Analyst ◽  
2021 ◽  
Author(s):  
Qingteng Lai ◽  
Wei Chen ◽  
Yanke Zhang ◽  
Zheng-Chun Liu

Peptide nucleic acids (PNAs) have attracted tremendous interest in the fabrication of highly sensitive electrochemical nucleic acid biosensor due to their higher stability and increased sensitivity than common DNA probes....


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Katja Engel ◽  
Sara Coyotzi ◽  
Melody A. Vachon ◽  
Jennifer R. McKelvie ◽  
Josh D. Neufeld

ABSTRACT Bentonite clay is an integral component of the engineered barrier system of deep geological repositories (DGRs) that are planned for the long-term storage of high-level radioactive waste. Although nucleic acid extraction and analysis can provide powerful qualitative and quantitative data reflecting the presence, abundance, and functional potential of microorganisms within DGR materials, extraction of microbial DNA from bentonite clay is challenging due to the low biomass and adsorption of nucleic acids to the charged clay matrix. In this study, we used quantitative PCR, gel fingerprinting, and high-throughput sequencing of 16S rRNA gene amplicons to assess DNA extraction efficiency from natural MX-80 bentonite and the same material “spiked” with Escherichia coli genomic DNA. Extraction protocols were tested without additives and with casein and phosphate as blocking agents. Although we demonstrate improved DNA recovery by blocking agents at relatively high DNA spiking concentrations, at relatively low spiking concentrations, we detected a high proportion of contaminant nucleic acids from blocking agents that masked sample-specific microbial profile data. Because bacterial genomic DNA associated with casein preparations was insufficiently removed by UV treatment, casein is not recommended as an additive for DNA extractions from low-biomass samples. Instead, we recommend a kit-based extraction protocol for bentonite clay without additional blocking agents, as tested here and validated with multiple MX-80 bentonite samples, ensuring relatively high DNA recoveries with minimal contamination. IMPORTANCE Extraction of microbial DNA from MX-80 bentonite is challenging due to low biomass and adsorption of nucleic acid molecules to the charged clay matrix. Blocking agents improve DNA recovery, but their impact on microbial community profiles from low-biomass samples has not been characterized well. In this study, we evaluated the effect of casein and phosphate as blocking agents for quantitative recovery of nucleic acids from MX-80 bentonite. Our data justify a simplified framework for analyzing microbial community DNA associated with swelling MX-80 bentonite samples within the context of a deep geological repository for used nuclear fuel. This study is among the first to demonstrate successful extraction of DNA from Wyoming MX-80 bentonite.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3317
Author(s):  
Eylon Yavin

The DNA mimic, PNA (peptide nucleic acid), has been with us now for almost 3 decades [...]


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 556
Author(s):  
Bonwoo Koo ◽  
Haneul Yoo ◽  
Ho Jeong Choi ◽  
Min Kim ◽  
Cheoljae Kim ◽  
...  

The expanding scope of chemical reactions applied to nucleic acids has diversified the design of nucleic acid-based technologies that are essential to medicinal chemistry and chemical biology. Among chemical reactions, visible light photochemical reaction is considered a promising tool that can be used for the manipulations of nucleic acids owing to its advantages, such as mild reaction conditions and ease of the reaction process. Of late, inspired by the development of visible light-absorbing molecules and photocatalysts, visible light-driven photochemical reactions have been used to conduct various molecular manipulations, such as the cleavage or ligation of nucleic acids and other molecules as well as the synthesis of functional molecules. In this review, we describe the recent developments (from 2010) in visible light photochemical reactions involving nucleic acids and their applications in the design of nucleic acid-based technologies including DNA photocleaving, DNA photoligation, nucleic acid sensors, the release of functional molecules, and DNA-encoded libraries.


2021 ◽  
Vol 11 (8) ◽  
pp. 3594
Author(s):  
Tamaki Endoh ◽  
Eriks Rozners ◽  
Takashi Ohtsuki

Nucleic acids not only store genetic information in their primary sequence but also exhibit biological functions through the formation of their unique structures [...]


Sign in / Sign up

Export Citation Format

Share Document