scholarly journals Irradiation performance of pyrolytic silicon carbide coatings on fissile fuel particles

Author(s):  
R. J. Lauf

Fuel particles for the High Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC coating with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) the combined effects of irradiation and fission product interactions. This paper reports the behavior of SiC deposited on fissile fuel particles and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.

Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
R. J. Lauf ◽  
D. N. Braski

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain layers of pyrolytic carbon and silicon carbide, which act as a miniature pressure vessel and form the primary fission product barrier. Of the many fission products formed during irradiation, the noble metals are of particular interest because they interact significantly with the SiC layer and their concentrations are somewhat higher in the low-enriched uranium fuels currently under consideration. To study fission product-SiC interactions, particles of UO2 or UC2 are doped with fission product elements before coating and are then held in a thermal gradient up to several thousand hours. Examination of the SiC coatings by TEM-AEM after annealing shows that silver behaves differently from the palladium group.


2008 ◽  
Vol 368-372 ◽  
pp. 1297-1299
Author(s):  
Xin Xing ◽  
Lin Liu ◽  
Xiao Zhong Huang ◽  
Xiao Dong Li

Silicon carbide coatings on graphite were prepared through polymer vapor pyrolysis deposition process (PVPD) under N2 atmosphere. During this process, some low molecular weight substances that polycarbosilane (PCS) pyrolyzed can be deposited on graphite, and they can convert into SiC in high temperature. The results of XRD showed that amorphous SiC coatings were formed on graphite when the pyrolysis temperature was 1000°C, andβ-SiC phase formed in the coatings when the temperature up to 1250°C. Effects of the coatings on the microstructure and properties were investigated. It was shown that the uniform dense SiC coatings could be obtained by carefully controlling the pyrolysis temperature and ramping rate when the number molecular weight of PCS was in the range of 1,000~1,500.


2008 ◽  
Vol 23 (6) ◽  
pp. 1785-1796 ◽  
Author(s):  
E. López-Honorato ◽  
P.J. Meadows ◽  
J. Tan ◽  
P. Xiao

Stoichiometric silicon carbide coatings the same as those used in the formation of TRISO (TRistructural ISOtropic) fuel particles were produced by the decomposition of methyltrichlorosilane in hydrogen. Fluidized bed chemical vapor deposition at around 1500 °C, produced SiC with a Young’s modulus of 362 to 399 GPa. In this paper we demonstrate the deposition of stoichiometric silicon carbide coatings with refined microstructure (grain size between 0.4 and 0.8 μm) and enhanced mechanical properties (Young’s modulus of 448 GPa and hardness of 42 GPa) at 1300 °C by the addition of propene. The addition of ethyne, however, had little effect on the deposition of silicon carbide. The effect of deposition temperature and precursor concentration were correlated to changes in the type of molecules participating in the deposition mechanism.


1970 ◽  
Vol 8 (5) ◽  
pp. 417-431 ◽  
Author(s):  
P. E. Reagan ◽  
E. L. Long ◽  
J. G. Morgan ◽  
J. H. Coobs

Sign in / Sign up

Export Citation Format

Share Document