New phases in the Al-Co-Cu alloy system : Marked variations from the “true” decagonal phase

Author(s):  
Atul S. Ramani ◽  
Lucille A. Giannuzzi ◽  
Altaf H. Carim ◽  
William R. Bitler ◽  
Paul R. Howell

The decagonal phase in the Al-Co-Cu alloy system was first discovered by He et al. We shall call this phase the “true” decagonal phase (TD) phase because it is the one most commonly observed in the Al-Co-Cu alloy system. It is well known that quasicrystalline phases such as the TD phase contain the phason defect peculiar to incommensurate phases that causes subtle variations from perfect decagonal symmetry. In this paper we report on the existence of new phases in the Al-Co-Cu alloy system, that are related to the TD phase but yet show marked variations from the TD phase. These variations are too drastic to be caused by phason defects alone.Figure 1(a) is a selected area diffraction pattern (SADP) recorded from a TD phase single “crystal” showing near perfect decagonal (tenfold) symmetry. This SADP agrees very well with the first published SADP of the TD phase in Al-Co-Cu that also shows almost perfect decagonal symmetry. In a previous paper we have reported several kinds of deviations from perfect decagonal symmetry, but none of these deviations involved the observation of perfect pentagonal (fivefold) symmetry. Figure 1(b) is an SADP recorded from a phase in Al-Co-Cu that exhibits perfect pentagonal symmetry instead of the expected decagonal symmetry. This breakdown of true tenfold symmetry into true fivefold symmetry is caused by unequal intensities of equal and opposite reflections. This example is a clear violation of Friedel's law, which states that the intensities of equal and opposite diffraction vectors must be equal.

Author(s):  
Atul S. Ramani ◽  
Earle R. Ryba ◽  
Paul R. Howell

The “decagonal” phase in the Al-Co-Cu system of nominal composition Al65CO15Cu20 first discovered by He et al. is especially suitable as a topic of investigation since it has been claimed that it is thermodynamically stable and is reported to be periodic in the dimension perpendicular to the plane of quasiperiodic 10-fold symmetry. It can thus be expected that it is an important link between fully periodic and fully quasiperiodic phases. In the present paper, we report important findings of our transmission electron microscope (TEM) study that concern deviations from ideal decagonal symmetry of selected area diffraction patterns (SADPs) obtained from several “decagonal” phase crystals and also observation of a lattice of main reflections on the 10-fold and 2-fold SADPs that implies complete 3-dimensional lattice periodicity and the fundamentally incommensurate nature of the “decagonal” phase. We also present diffraction evidence for a new transition phase that can be classified as being one-dimensionally quasiperiodic if the lattice of main reflections is ignored.


2000 ◽  
Vol 41 (4) ◽  
pp. 522-526 ◽  
Author(s):  
Yoshihiko Yokoyama ◽  
Kenzo Fukaura ◽  
Hisakichi Sunada ◽  
Ryunosuke Note ◽  
Tasaku Sato ◽  
...  

Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiaheng Li ◽  
Yingbo Zhang ◽  
Xinyu Cao ◽  
Qi Zeng ◽  
Ye Zhuang ◽  
...  

Abstract Aluminum alloys are attractive for a number of applications due to their high specific strength, and developing new compositions is a major goal in the structural materials community. Here, we investigate the Al-Zn-Mg-Cu alloy system (7xxx series) by machine learning-based composition and process optimization. The discovered optimized alloy is compositionally lean with a high ultimate tensile strength of 952 MPa and 6.3% elongation following a cost-effective processing route. We find that the Al8Cu4Y phase in wrought 7xxx-T6 alloys exists in the form of a nanoscale network structure along sub-grain boundaries besides the common irregular-shaped particles. Our study demonstrates the feasibility of using machine learning to search for 7xxx alloys with good mechanical performance.


1995 ◽  
Vol 10 (4) ◽  
pp. 293-295 ◽  
Author(s):  
F. Brunet ◽  
C. Chopin ◽  
A. Elfakir ◽  
M. Quarton

A new diffraction pattern of the high-temperature and high-pressure polymorph Mg3(PO4)2-III (PDF 43-500) is given and indexed on the basis of a single-crystal structure refinement. It allows diffractogram indexing of the isostructural high-temperature and high-pressure form of Co3(PO4)2 (PDF 43-499).


2014 ◽  
Vol 70 (a1) ◽  
pp. C187-C187
Author(s):  
Alison Edwards

"The renaissance in Laue studies - at neutron sources - provides us with access to single crystal neutron diffraction data for synthetic compounds without requiring synthesis of prohibitively large amounts of compound or improbably large crystals. Such neutron diffraction studies provide vital data where proof of the presence or absence of hydrogen in particular locations is required and which cannot validly be proved by X-ray studies. Since the commissioning of KOALA at OPAL in 2009[1] we have obtained numerous data sets which demonstrate the vital importance of measuring data even where the extent of the diffraction pattern is at relatively low resolution - especially when compared to that obtainable for the same compound with X-rays. In the Laue experiment performed with a fixed radius detector, data reduction is only feasible for crystals in the ""goldilocks"" zone – where the unit cell is relatively large for the detector, a correspondingly low resolution diffraction pattern in which adjacent spots are less affected by overlap will yield more data against which a structure can be refined than a pattern of higher resolution – one where neighbouring spots overlap rendering both unusable (in our current methodology). Analogous application of powder neutron diffraction in such determinations is also considered. Single crystal neutron diffraction studies of several important compounds (up to 5KDa see figure below)[2] in which precise determination of hydride content by neutron diffraction was pivotal to the final formulation will be presented. The neutron data sets typically possess 20% or fewer unique data at substantially "lower resolution" than the corresponding X-ray data sets. Careful refinement clearly reveals chemical detail which is typically unexplored in related X-ray diffraction studies reporting high profile chemistry despite the synthetic route being one which hydride ought to be considered/excluded in product formulation."


2018 ◽  
Vol 74 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Pamela Allan ◽  
Jean-Baptiste Arlin ◽  
Alan R. Kennedy ◽  
Aiden Walls

Ten isostructural single-crystal diffraction studies of mixed cation Ca/Sr salt forms of the salicylate anion are presented, namely catena-poly[[diaquacalcium(II)/strontium(II)]-bis(μ2-2-hydroxybenzoato)], [Ca1–x Sr x (C7H5O3)2(H2O)2] n , where x = 0, 0.041, 0.083, 0.165, 0.306, 0.529, 0.632, 0.789, 0.835 and 1. The structure of an isostructural Sr/Ba species, namely catena-poly[[diaquastrontium(II)/barium(II)]-bis(μ2-2-hydroxybenzoato)], [Sr0.729Ba0.271(C7H5O3)2(H2O)2], is also described. The Ca/Sr structures form a series where, with increasing Sr content, the unit cell expands in both the crystallographic a and c directions (by 1.80 and 3.18%, respectively), but contracts slightly in the b direction (−0.31%). The largest percentage structural expansion lies parallel to the direction of propagation of the one-dimensional coordination polymer that is the primary structural feature. This structural expansion is thus associated with increased M—O distances. Aqueous solubility measurements show that solubility generally increases with increasing Sr content. Thus, tuning the composition of these mixed counter-ion salt forms leads to systematic structural changes and allows solubility to be tuned to values between those for the pure Ca and Sr species.


2019 ◽  
Vol 482 ◽  
pp. 75-78
Author(s):  
Mitsuru Ohtake ◽  
Kana Serizawa ◽  
Masaaki Futamoto ◽  
Fumiyoshi Kirino ◽  
Nobuyuki Inaba

2012 ◽  
pp. 279-284
Author(s):  
Flemming J. H. Ehlers ◽  
Sigurd Wenner ◽  
Sigmund J. Andersen ◽  
Calin D. Marioara ◽  
R. Holmestad
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document