Ion localization in Cells by Electron Probe X-Ray Microanalysis (Epxma) Depends on Cryopreparation

Author(s):  
Karl Zierold

Elements in biological cells can be localized by EPXMA. The most attractive approach of this method with respect to detection limit and spatial resolution is scanning transmission electron microscopy combined with energy dispersive x ray microanalysis of ultrathin (approximately 100 nm thick) freeze-dried cryosections. The detection limit, here determined by scanning an electron beam of 1.3 nA for 2 min over freeze-dried cryosections from frozen standard solutions was found to be about 10 mMol/kg dry weight for all elements with the atomic number Z higher than 12. Due to the Be window in the x ray detector the detection limit was 20 mMol/kg dry weight for Mg (Z = 12) and 30 mMol/kg dry weight for Na (Z = 11). The lateral analytical resolution was less than 50 nm, limited by section thickness. In most cells 10 mMol/kg dry weight correspond to an absolute detection limit of .500 atoms within a volume of 100×50×50 nm3.

Author(s):  
Martina Luysberg ◽  
Marc Heggen ◽  
Karsten Tillmann

The FEI Titan Tecnai G2 F20 is a versatile transmission electron microscope which is equipped with a Gatan Tridiem 863P post column image filter (GIF) and a high angle energy dispersive X-ray (EDX) detector. This set up allows for a variety of experiments such as conventional imaging and diffraction, recording of bright- and dark-field scanning transmission electron microscopy (STEM) images, or acquiring elemental maps extracted from energy electron loss spectra (EELS) or EDX signals.


CrystEngComm ◽  
2019 ◽  
Vol 21 (29) ◽  
pp. 4373-4386 ◽  
Author(s):  
Christian Thieme ◽  
Michael Kracker ◽  
Katrin Thieme ◽  
Christian Patzig ◽  
Thomas Höche ◽  
...  

The role of silver as a nucleating agent in BaO/SrO/ZnO/SiO2 glasses is studied with a range of microstructure-characterization techniques, such as scanning transmission electron microscopy, ultraviolet-visible spectroscopy, and X-ray diffraction.


1988 ◽  
Vol 144 ◽  
Author(s):  
OH Tae-IL ◽  
Wallace B. Leigh

ABSTRACTWe have analyzed the redistribution parameters for InP grown by organometallic vapor phase epitaxy (OMVPE) on GaAs substrates. The layers, grown using (trimethyl Indium) TMIn at atmospheric pressure, have been characterized for epitaxial quality using photoluminescence, energy dispersed x-ray analysis, and optical microscopy. In order to better understand the effects of inter-diffusion and inter-mixing for the GaAs into the InP epitaxial layer, the layer-substrate interface was first probed by growing consecutive samples of InP for increasingly longer growth times, and thus characterizing the layers as one moves away from the interface. For more detailed analysis, cross-sections of the InP/GaAs interface were prepared for scanning transmission electron microscopy (STEM). Energy dispersed x-ray analysis has shown that all elements In, Ga, As, and P, are present on the epitaxial side of the interface, while only Ga and As are present on the substrate side. A combination of electron diffraction and luminescence measurements show the epitaxy is at least 80% InP at the interface and essentially 100% InP at a distance of 6000Å into the epilayer. Electron diffraction and bright field investigation at the interface show the existence of a second phase, existing in a mostly InP matrix. The effects of redistribution in heteroepitaxial InP/GaAs will be discussed.


2017 ◽  
Vol 50 (4) ◽  
pp. 2009
Author(s):  
V. Skliros ◽  
A. Anagnostopoulou ◽  
P. Tsakiridis ◽  
M. Perraki

Nesquehonite, a hydrous carbonate with promising uses such as building raw material and treatment of wastewaters, was synthesized under low pressure conditions by reaction of gaseous CO2 with Mg chloride solution and it was studied by means of X-Ray Diffraction, optical and scanning/transmission electron microscopy, and FTIR and Raman spectroscopic methods. Synthesized nesquehonite forms elongated fibers, exhibiting transparent to translucent diaphaneity and vitreous luster. It is characterized by high crystallinity. IR and Raman spectroscopy indicated the presence of OHand HCO3 - in the crystal structure of nesquehonite. The nesquehonite synthesis described herein constitutes a potential permanent storage of CO2 emissions.


Sign in / Sign up

Export Citation Format

Share Document