Electron diffraction of copper phthalocyanine on the HVEM

Author(s):  
W. F. Tivol ◽  
J. N. Turner ◽  
M. P. McCourt ◽  
D. L. Dorset

The use of high-energy (1200 kV) electrons has been shown to be advantageous in the ab initio structure analysis from electron diffraction of organic compounds. Previous studies showed that ab initio analysis of copper perchlorophthalocyanine could be accomplished ; accelerating voltages at or above 1000 kV, but net at 400 kV for crystals which are about 10 nm thick. Copper perbromophthalocyanine could also be analyzed ab initio at 1200 kV, but the presence of severe dynamical scattering precluded such analysis at lower voltages.A study of copper perchlorophthalocyanine at accelerating voltages from 200 kV to 1200 kV showed that dynamical scattering accounted for the differences among the diffraction patterns which lead the failure of ab initio analysis at the lower voltages. The series of phthalocyanines offers a good model for the study of dynamical scatterin and direct phasing methods, since it consists of relatively radiation-resistant compounds for which high-resolution diffraction patterns can be obtained.

Author(s):  
W.F. Tivol ◽  
J.N. Turner ◽  
D.L. Dorset

The use of high-energy (1200 kV) electrons has been shown to be advantageous in the ab initio structure analysis from electron diffraction of organic compounds. Dynamical scattering from compounds containing heavy atoms may make such an analysis difficult or impossible with data obtained at conventional voltages. In the case that even high-energy electrons do not produce diffraction intensities sufficiently close to the kinematic values, criteria other than the simple minimization of the R-factor must be used to seek the correct structure solution.Copper perbromophthalocyanine (Cu-BrPTCY) was grown epitaxially from the vapor phase onto a clean KCl crystal face. Electron diffraction patterns were obtained from crystals tilted at 26.5° and oriented so that the electron beam was parallel to the c-axis. The AEI EM7 high-voltage electron microscope was used at a voltage of 1200 kV in diffraction mode with a 10 μm selected area aperture. The data were obtained using a minimal electron dose and recorded on DuPont Lo-dose Mammography film (See Fig. 1). Intensities were measured on a Joyce-Loebl MkIIIC flat bed microdensitometer by integrating under the peaks.


Author(s):  
W. F. Tivol ◽  
J. R. Fryer

The use of high-energy (1200 kV) electrons has been shown to be advantageous in the ab initio structure analysis from electron diffraction of organic compounds. Previous studies showed that ab initio analysis of copper perchlorophthalocyanine could be accomplished at accelerating voltages at or above 1000 kV, but not at 400 kV for crystals which are about 10 nm thick. Copper perbromophthalocyanine could also be analyzed ab initio at 1200 kV, but the presence of severe dynamical scattering precluded such analysis at lower voltages.Copper perfluorophthalocyanine (Cu FPC) was grown epitaxially from the vapor phase onto a clean KC1 crystal face. Electron diffraction patterns were obtained from crystals tilted at 20° and oriented so that the electron beam was parallel to the c-axis.Electron doses were kept to a minimum by the use of a 100 μm condenser aperture and a highly excited first condenser lens. A video system allows scanning the specimen to find a crystal suitable for the correct orientation of the grid by rotating it within its own plane and focusing the objective lens, all at an illumination level below that necessary to distinguish anything by eye on the HVEM's phosphor screen.


Author(s):  
Werner Kühlbrandt ◽  
Da Neng Wang ◽  
K.H. Downing

The light-harvesting chlorophyll-a/b protein complex (LHC-II) is the most abundant membrane protein in the chloroplasts of green plants where it functions as a molecular antenna of solar energy for photosynthesis. We have grown two-dimensional (2d) crystals of the purified, detergent-solubilized LHC-II . The crystals which measured 5 to 10 μm in diameter were stabilized for electron microscopy by washing with a 0.5% solution of tannin. Electron diffraction patterns of untilted 2d crystals cooled to 130 K showed sharp spots to 3.1 Å resolution. Spot-scan images of 2d crystals were recorded at 160 K with the Berkeley microscope . Images of untilted crystals were processed, using the unbending procedure by Henderson et al . A projection map of the complex at 3.7Å resolution was generated from electron diffraction amplitudes and high-resolution phases obtained by image processing .A difference Fourier analysis with the same image phases and electron diffraction amplitudes recorded of frozen, hydrated specimens showed no significant differences in the 3.7Å projection map. Our tannin treatment therefore does not affect the structural integrity of the complex.


Author(s):  
Jan-Olov Bovin ◽  
Osamu Terasaki ◽  
Jan-Olle Malm ◽  
Sven Lidin ◽  
Sten Andersson

High resolution transmission electron microscopy (HRTEM) is playing an important role in identifying the new icosahedral phases. The selected area diffraction patterns of quasi crystals, recorded with an aperture of the radius of many thousands of Ångströms, consist of dense arrays of well defined sharp spots with five fold dilatation symmetry which makes the interpretation of the diffraction process and the resulting images different from those invoked for usual crystals. The atomic structure of the quasi crystals is not established even if several models are proposed. The correct structure model must of course explain the electron diffraction patterns with 5-, 3- and 2-fold symmetry for the phases but it is also important that the HRTEM images of the alloys match the computer simulated images from the model. We have studied quasi crystals of the alloy Al65Cu20Fe15. The electron microscopes used to obtain high resolution electro micrographs and electron diffraction patterns (EDP) were a (S)TEM JEM-2000FX equipped with EDS and PEELS showing a structural resolution of 2.7 Å and a IVEM JEM-4000EX with a UHP40 high resolution pole piece operated at 400 kV and with a structural resolution of 1.6 Å. This microscope is used with a Gatan 622 TV system with an image intensifier, coupled to a YAG screen. It was found that the crystals of the quasi crystalline materials here investigated were more sensitive to beam damage using 400 kV as electron accelerating voltage than when using 200 kV. Low dose techniques were therefore applied to avoid damage of the structure.


1997 ◽  
Vol 3 (S2) ◽  
pp. 365-366
Author(s):  
M.B. Sherman ◽  
J. Brink ◽  
W. Chiu

High resolution imaging in electron cryomicroscopy of biological macromolecules is strongly affected by beam-induced charging1. Charging is often expressed in frozen or glucose-embedded specimens as an increase in apparent mass-thickness of the irradiated area. Another obvious effect of charging is blurring of both the unscattered beam and reflections in electron diffraction patterns recorded from crystalline specimens. Coating of ice-embedded specimens with a carbon layer helps to improve the stability of the ice and probably reduce charging of the specimen. Coating in a Gatan ion-beam coater (model 681) of glucose-embedded specimens with thin layers of various conductive materials did reduce charging but the specimens were damaged by the high energy ions used for the coating. In general, coating resulted in much weaker reflections in electron diffraction patterns obtained from coated crystals and faster resolution fall-off.We modified the Gatan coater by outfitting it with a new chamber that replaced the ion-beam deposition capability for thermal evaporation of carbon rods (Fig. 1).


2001 ◽  
Vol 16 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Takeo Oku ◽  
Jan-Olov Bovin ◽  
Iwami Higashi ◽  
Takaho Tanaka ◽  
Yoshio Ishizawa

Atomic positions for Y atoms were determined by using high-resolution electron microscopy and electron diffraction. A slow-scan charge-coupled device camera which had high linearity and electron sensitivity was used to record high-resolution images and electron diffraction patterns digitally. Crystallographic image processing was applied for image analysis, which provided more accurate, averaged Y atom positions. In addition, atomic disordering positions in YB56 were detected from the differential images between observed and simulated images based on x-ray data, which were B24 clusters around the Y-holes. The present work indicates that the structure analysis combined with digital high-resolution electron microscopy, electron diffraction, and differential images is useful for the evaluation of atomic positions and disordering in the boron-based crystals.


1996 ◽  
Vol 284-285 ◽  
pp. 208-210 ◽  
Author(s):  
V. Klechkovskaya ◽  
M. Anderle ◽  
R. Antolini ◽  
R. Canteri ◽  
L. Feigin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document