Cryomicroscopy of low-Tg latex particles via freeze drying

Author(s):  
J. R. Reffner

Transmission Electron Microscopy (TEM) is a powerful tool for investigating the structure of latex particles. However, examining low Tg (glass transision, Tg < room temperature) latex particles requires special techniques due to the significant deformation which occurs if the particles are dispersed onto a substrate at room temperature. Here a freeze drying (FD) technique is presented which permits individual emulsion particles, including stained particles, to be examined in a manner that minimizes deformation by maintaining the particles at temperatures below Tg.Typically, particle morphology is determined from images of individual latex particles dispersed onto a supporting ultra-thin substrate or from images of ultra-microtomed sections of films cast from the latex. Examining particles dispersed onto a substrate is often advantageous, allowing direct determination of particle shape and characterization of the morphology prior to the film formation process. Although low Tg materials can be examined using this technique, information about the size, shape and morphology of phase separated domains can be obscured by the deformation which occurs when the particles are examined at room temperature.


Author(s):  
O. L. Shaffer ◽  
M.S. El-Aasser ◽  
C. L. Zhao ◽  
M. A. Winnik ◽  
R. R. Shivers

Transmission electron microscopy is an important approach to the characterization of the morphology of multiphase latices. Various sample preparation techniques have been applied to multiphase latices such as OsO4, RuO4 and CsOH stains to distinguish the polymer phases or domains. Radiation damage by an electron beam of latices imbedded in ice has also been used as a technique to study particle morphology. Further studies have been developed in the use of freeze-fracture and the effect of differential radiation damage at liquid nitrogen temperatures of the latex particles embedded in ice and not embedded.Two different series of two-stage latices were prepared with (1) a poly(methyl methacrylate) (PMMA) seed and poly(styrene) (PS) second stage; (2) a PS seed and PMMA second stage. Both series have varying amounts of second-stage monomer which was added to the seed latex semicontinuously. A drop of diluted latex was placed on a 200-mesh Formvar-carbon coated copper grid.



2021 ◽  
Author(s):  
Md. Farhan Naseh ◽  
Neelam Singh ◽  
Jamilur R. Ansari ◽  
Ashavani Kumar ◽  
Tapan Sarkar ◽  
...  

Abstract Here, we report functionalized graphene quantum dots (GQDs) for the optical detection of arsenic at room temperature. GQDs with the fluorescence of three fundamental colors (red, green, and blue) were synthesized and functionally capped with L-cysteine (L-cys) to impart selectively towards As (III) by exploiting the affinity of L-cys towards arsenite. The optical characterization of GQDs was carried out using UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectrometry and the structural characterizations were performed using transmission electron microscopy. The fluorescence results showed instantaneous quenching in intensity when the GQDs came in contact with As (III) for all test concentrations over a range from 0.025 ppb to 25 ppb, which covers the permissible limit of arsenic in drinking water. The experimental results suggested excellent sensitivity and selectivity towards As (III).



2009 ◽  
Vol 81 (8) ◽  
pp. 1489-1498 ◽  
Author(s):  
Amreesh Chandra ◽  
Alexander J. Roberts ◽  
Eric Lam How Yee ◽  
Robert C. T. Slade

Nanostructured materials are extensively investigated for application in energy storage and power generation devices. This paper deals with the synthesis and characterization of nanomaterials based on oxides of vanadium and with their application as electrode materials for energy storage systems viz. supercapacitors. These nano-oxides have been synthesized using a hydrothermal route in the presence of templates: 1-hexadecylamine, Tweens and Brij types. Using templates during synthesis enables tailoring of the particle morphology and physical characteristics of synthesized powders. Broad X-ray diffraction peaks show the formation of nanoparticles, confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. SEM studies show that a large range of nanostructures such as needles, fibers, particles, etc. can be synthesized. These particles have varying surface areas and electrical conductivity. Enhancement of surface area as much as seven times relative to surface areas of starting parent materials has been observed. These properties make such materials ideal candidates for application as electrode materials in supercapacitors. Assembly and characterization of supercapacitors based on electrodes containing these active nano-oxides are discussed. Specific capacitance of &gt;100 F g–1 has been observed. The specific capacitance decreases with cycling: causes of this phenomenon are presented.



2005 ◽  
Vol 108-109 ◽  
pp. 303-308 ◽  
Author(s):  
N. Cherkashin ◽  
Martin J. Hÿtch ◽  
Fuccio Cristiano ◽  
A. Claverie

In this work, we present a detailed structural characterization of the defects formed after 0.5 keV B+ implantation into Si to a dose of 1x1015 ions/cm2 and annealed at 650°C and 750°C during different times up to 160 s. The clusters were characterized by making use of Weak Beam and High Resolution Transmission Electron Microscopy (HRTEM) imaging. They are found to be platelets of several nanometer size with (001) habit plane. Conventional TEM procedure based on defect contrast behavior was applied to determine the directions of their Burger’s vectors. Geometric Phase Analysis of HRTEM images was used to measure the displacement field around these objects and, thus, to unambiguously determine their Burger’s vectors. Finally five types of dislocation loops lying on (001) plane are marked out: with ] 001 [1/3 ≅ b and b ∝ [1 0 1], [-1 0 1], [0 1 1], [0 -1 1].



2014 ◽  
Vol 602-603 ◽  
pp. 19-22 ◽  
Author(s):  
Lin Qiang Gao ◽  
Hai Yan Chen ◽  
Zhen Wang ◽  
Xin Zou

Nanoscale LiTaO3 powders with perovskite structure were synthesized using the solvothermal technique with glycol as solvent at 240°C for 12h. The powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD was used to elucidate room temperature structures using Rietveld refinement. The powders were pure single pervoskite phase with high crystallinity. FESEM and TEM were used to determine particle size and morphology. The average LiTaO3 grain size was estimated to be < 200nm, and TEM images indicated that LiTaO3 particles had a brick-like morphology. In addition, the effect of the temperature on the LiTaO3 power characterisitics was also detailed studied.



2020 ◽  
Vol 10 (01) ◽  
pp. 1-4
Author(s):  
ABM Helal Uddin ◽  
Abdelkader Hassani ◽  
Abul K. Azad ◽  
Hamid H. Enezei ◽  
Siti A. Hussain

The current study aims to improve drug release properties of orotic acid loaded with chitosan inclusion complex (OA/CS). The OA/CS inclusion complex was synthesized using the freeze-drying technique. The characterization of inclusion OA/CS was carried out using fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), zeta sizer, and transmission electron microscopy (TEM). Furthermore, the size of OA/CS ranged between 58 nm and 200 nm, and the zeta potential was 30 mV. Thus, this study indicates that OA/CS has a promising future to develop a carrier for drug delivery systems further.



Author(s):  
O.L. Shaffer ◽  
M.S. El-Aasser ◽  
J.W. Vanderhoff

Transmission electron microscopy is an excellent method to study particle size and particle morphology of latexes. Special sample techniques are utilized in the study of latexes and often more than one technique is needed to answer questions concerning the structure of the particle. If the latex is of a core/shell type the study becomes more complex. Sample preparation for studying latexes include staining with osmium tetroxide to crosslink and stain unsaturated polymers, cold stage if the latex is too soft to examine at room temperature, negative staining to increase contrast shadowing to determine the sag of the particle at room temperature, ultramicrotoming, cryoultramicrotoming or a combination of techniques such as staining and cold stage.The latex investigated was the first stage seed latex of poly (butylacrylate - butadiene) and the final latex a core-shell of poly(butylacrylate - butadiene)/poly(methyl methacrylate). Because of its unsaturation, poly(butadiene) can be preferentially stained with osmium tetroxide.



2012 ◽  
Vol 557-559 ◽  
pp. 624-627
Author(s):  
Yan Ming Chen ◽  
Jiao Han

Silver nanoparticles have been synthesized in 3-(aminopropyl)triethoxysilane (KH-550) solution using DMF (N, N-dimethylformamide) as both solvent and reductant at room temperature and 120°C. A characteristic surface plasmon band can be observed for the obtained silver nanoparticles from UV-vis absorption spectra, which indicate that KH-550 can serve as stabilizing agent for the formation of silver nanoparticles. Transmission electron microscopy (TEM) results show that silver nanoparticles with different sizes were obtained by simply controlling the reaction temperature.



2017 ◽  
Vol 32 (S1) ◽  
pp. S193-S200
Author(s):  
B. Peplinski ◽  
B. Adamczyk ◽  
P. Formanek ◽  
C. Meyer ◽  
O. Krüger ◽  
...  

This paper reports the first successful synthesis and the structural characterization of nanocrystalline and stacking-disordered β-cristobalite AlPO4 that is chemically stabilized down to room temperature and free of crystalline impurity phases. Several batches of the title compound were synthesized and thoroughly characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy mapping in SEM, solid-state 31P nuclear magnetic resonance (31P-NMR) spectroscopy including the TRAPDOR method, differential thermal analysis (DTA), gas-sorption methods, optical emission spectroscopy, X-ray fluorescence spectroscopy, and ion chromatography. Parameters that are critical for the synthesis were identified and optimized. The synthesis procedure yields reproducible results and is well documented. A high-quality XRD pattern of the title compound is presented, which was collected with monochromatic copper radiation at room temperature in a wide 2θ range of 5°–100°.



Sign in / Sign up

Export Citation Format

Share Document