Quantitative x-ray microanalysis and thickness determination using ζ factor

Author(s):  
M. Watanabe ◽  
Z. Horita ◽  
M. Nemoto

X-ray absorption in quantitative x-ray microanalysis of thin specimens may be corrected without knowledge of thickness when the extrapolation method or the differential x-ray absorption (DXA) method is used. However, there is an experimental limitation involved in each method. In this study, a method is proposed to overcome such a limitation. The method is developed by introducing the ζ factor and by combining the extrapolation method and DXA method. The method using the ζ factor, which is called the ζ-DXA method in this study, is applied to diffusion-couple experiments in the Ni-Al system.For a thin specimen where incident electrons are fully transparent, the characteristic x-ray intensity generated from a beam position, I, may be represented as I = (NρW/A)Qωaist.

Author(s):  
Zenji Horita ◽  
Ryuzo Nishimachi ◽  
Takeshi Sano ◽  
Minoru Nemoto

Absorption correction is often required in quantitative x-ray microanalysis of thin specimens using the analytical electron microscope. For such correction, it is convenient to use the extrapolation method[l] because the thickness, density and mass absorption coefficient are not necessary in the method. The characteristic x-ray intensities measured for the analysis are only requirement for the absorption correction. However, to achieve extrapolation, it is imperative to obtain data points more than two at different thicknesses in the identical composition. Thus, the method encounters difficulty in analyzing a region equivalent to beam size or the specimen with uniform thickness. The purpose of this study is to modify the method so that extrapolation becomes feasible in such limited conditions. Applicability of the new form is examined by using a standard sample and then it is applied to quantification of phases in a Ni-Al-W ternary alloy.The earlier equation for the extrapolation method was formulated based on the facts that the magnitude of x-ray absorption increases with increasing thickness and that the intensity of a characteristic x-ray exhibiting negligible absorption in the specimen is used as a measure of thickness.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 664 ◽  
Author(s):  
Andrea Martini ◽  
Elisa Borfecchia

X-ray absorption spectroscopy (XAS) today represents a widespread and powerful technique, able to monitor complex systems under in situ and operando conditions, while external variables, such us sampling time, sample temperature or even beam position over the analysed sample, are varied. X-ray absorption spectroscopy is an element-selective but bulk-averaging technique. Each measured XAS spectrum can be seen as an average signal arising from all the absorber-containing species/configurations present in the sample under study. The acquired XAS data are thus represented by a spectroscopic mixture composed of superimposed spectral profiles associated to well-defined components, characterised by concentration values evolving in the course of the experiment. The decomposition of an experimental XAS dataset in a set of pure spectral and concentration values is a typical example of an inverse problem and it goes, usually, under the name of multivariate curve resolution (MCR). In the present work, we present an overview on the major techniques developed to realize the MCR decomposition together with a selection of related results, with an emphasis on applications in catalysis. Therein, we will highlight the great potential of these methods which are imposing as an essential tool for quantitative analysis of large XAS datasets as well as the directions for further development in synergy with the continuous instrumental progresses at synchrotron sources.


1983 ◽  
Vol 16 (2) ◽  
pp. 220-232 ◽  
Author(s):  
R. P. Phizackerley ◽  
Z. U. Rek ◽  
G. B. Stephenson ◽  
S. D. Conradson ◽  
K. O. Hodgson ◽  
...  

The design and evaluation of an energy-dispersive spectrometer to measure X-ray absorption spectra rapidly using a synchrotron-radiation source is presented. The method employs a cylindrically bent triangular crystal to focus and disperse a quasi-parallel polychromatic X-ray beam onto the sample. The beam passing through the sample then diverges towards an X-ray detector where beam position can be correlated to energy. Both concentrated and dilute samples were measured on X-ray film and with an electronic linear photodiode array detector and the data analysed to determine the resolution obtained and the data quality. This method is shown to provide an efficient way to obtain high-quality EXAFS and absorption-edge data and should permit kinetic studies to be performed on small samples with good counting statistics. The method should find application in the fields of biophysics, chemistry and materials science.


1987 ◽  
Vol 51 (359) ◽  
pp. 49-60 ◽  
Author(s):  
G. W. Lorimer

AbstractIn a thin specimen X-ray absorption and fluorescence can, to a first approximation, be ignored and the observed X-ray intensity ratios, IA/IB, can be converted into weight fraction ratios, , can be converted into weight fraction ratios, CA/CB, by multiplying by a constant , by multiplying by a constant kAB;kAB values can be calculated or determined experimentally. The major correction which may have to be made to the calculated weight fraction ratio is for X-ray absorption within the specimen. The activated volume for analysis in a thin specimen is approximately 100 000 × less than in a bulk sample. Beam spreading within the specimen can be estimated using a simple formula based on a single elastic scattering event at the centre of the specimen. Examples are given of the application of the technique to obtain both qualitative and quantitative analyses from thin mineral specimens. The minimum detectable mass and the minimum mass fraction which can be measured using the technique are estimated.


1957 ◽  
Vol 1 ◽  
pp. 439-453
Author(s):  
Robert E. Ogilvie

AbstractWhen two metals are allowed to diffuse into one another, a diffusion aone is formed, the shape of which is determined by the relative diffusivities of the two elements, the time and temperature of the diffusion, and the number of phases existing in equilibrium at the diffusion temperature.An X-ray absorption technique has been developed to analyze such concentration gradients. This involves the preparation of a thin section from a typical diffusion couple parallel to its axis. This is then scanned with a monochromatic X-ray beam and the transmitted X-rays are measured with a Gejger counter. The intensity of the transmitted beam is determined by the composition of the area in question and the absorption coefficients of the two elements.


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Author(s):  
R.F. Egerton

SIGMAL is a short (∼ 100-line) Fortran program designed to rapidly compute cross-sections for L-shell ionization, particularly the partial crosssections required in quantitative electron energy-loss microanalysis. The program is based on a hydrogenic model, the L1 and L23 subshells being represented by scaled Coulombic wave functions, which allows the generalized oscillator strength (GOS) to be expressed analytically. In this basic form, the model predicts too large a cross-section at energies near to the ionization edge (see Fig. 1), due mainly to the fact that the screening effect of the atomic electrons is assumed constant over the L-shell region. This can be remedied by applying an energy-dependent correction to the GOS or to the effective nuclear charge, resulting in much closer agreement with experimental X-ray absorption data and with more sophisticated calculations (see Fig. 1 ).


Author(s):  
J. Bentley ◽  
E. A. Kenik

Instruments combining a 100 kV transmission electron microscope (TEM) with scanning transmission (STEM), secondary electron (SEM) and x-ray energy dispersive spectrometer (EDS) attachments to give analytical capabilities are becoming increasingly available and useful. Some typical applications in the field of materials science which make use of the small probe size and thin specimen geometry are the chemical analysis of small precipitates contained within a thin foil and the measurement of chemical concentration profiles near microstructural features such as grain boundaries, point defect clusters, dislocations, or precipitates. Quantitative x-ray analysis of bulk samples using EDS on a conventional SEM is reasonably well established, but much less work has been performed on thin metal foils using the higher accelerating voltages available in TEM based instruments.


Author(s):  
V. Serin ◽  
K. Hssein ◽  
G. Zanchi ◽  
J. Sévely

The present developments of electron energy analysis in the microscopes by E.E.L.S. allow an accurate recording of the spectra and of their different complex structures associated with the inner shell electron excitation by the incident electrons (1). Among these structures, the Extended Energy Loss Fine Structures (EXELFS) are of particular interest. They are equivalent to the well known EXAFS oscillations in X-ray absorption spectroscopy. Due to the EELS characteristic, the Fourier analysis of EXELFS oscillations appears as a promising technique for the characterization of composite materials, the major constituents of which are low Z elements. Using EXELFS, we have developed a microstructural study of carbon fibers. This analysis concerns the carbon K edge, which appears in the spectra at 285 eV. The purpose of the paper is to compare the local short range order, determined by this way in the case of Courtauld HTS and P100 ex-polyacrylonitrile carbon fibers, which are high tensile strength (HTS) and high modulus (HM) fibers respectively.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


Sign in / Sign up

Export Citation Format

Share Document