The influence of surface roughness on diffracted X-ray intensities in Bragg–Brentano geometry and its effect on the structure determination by means of Rietveld analysis

1993 ◽  
Vol 8 (2) ◽  
pp. 74-83 ◽  
Author(s):  
W. Pitschke ◽  
H. Hermann ◽  
N. Mattern

Measurements of X-ray diffraction patterns of high-Tcsuperconductor and tungsten–carbide powder samples using a Bragg–Brentano diffractometer showed systematic variations of the intensities for different preparation conditions. For specimens with high surface roughness, an angle-dependent decrease of the intensities is observed which is caused by the microabsorption of the X-rays due to the microstructure of the powder sample. In Rietveld analysis, the thermal parameters are strongly influenced by this effect and may tend to negative values. A realistic description of the surface structure of flat powder samples is proposed. Using an analytical approximation for the microabsorption effect and its dependence on the microstructural parameters the Rietveld refinement yields reasonable values for the thermal parameters.

2003 ◽  
Vol 793 ◽  
Author(s):  
Arwyn L. E. Smalley ◽  
Brandon Howe ◽  
David C. Johnson

ABSTRACTA series of cerium-containing CoSb3 samples were synthesized, with cerium quantities varying from 0 to 2 stoichiometric equivalents. These samples were annealed at low temperatures to crystallize the kinetically stable phases CexCo4Sb12 (x = 0–0.5). X-ray diffraction showed that these samples were phase pure, and Rietveld analysis on x-ray diffraction data from powder samples indicated that these samples were 25–88% crystalline. Electrical measurements showed that these samples are n-type, which was previously unknown in CexCo4Sb12. Magnetic measurements showed that the samples were paramagnetic due to the cerium being incorporated into the diamagnetic CoSb3 compound. In addition, they contained a ferromagnetic component that was attributed to the amorphous, cerium-containing phase.


2001 ◽  
Vol 205 ◽  
pp. 457-462
Author(s):  
Webster Cash

X-rays have tremendous potential for imaging at the highest angular resulution. The high surface brightness of many x-ray sources will reveal angular scales heretofore thought unreachable. The short wavelengths make instrumentation compact and baselines short. We discuss how practical x-ray interferometers can be built for astronomy using existing technology. We describe the Maxim Pathfinder and Maxim missions which will achieve 100 and 0.1 micro-arcsecond imaging respectively. The science to be tackled with resolution of up to one million times that of HST will be outlined, with emphasis on eventually imaging the event horizon of a black hole.


2009 ◽  
Vol 42 (3) ◽  
pp. 496-501 ◽  
Author(s):  
A. I. Rykov ◽  
M. Seto ◽  
Y. Ueda ◽  
K. Nomura

Since it is not always feasible to synthesize single crystals of novel materials, the orientation of layered polycrystals has become an attractive basis for studying the angular dependence of inelastic scattering of X-rays or neutrons. Utilizing Rietveld analysis, the anisotropic properties of layered structures in novel manganites and cuprates have been studied with oriented powders instead of single crystals. The phonon density of states (DOS) and atomic thermal displacement are anisotropic in theA-site-ordered manganites LnBaMn2Oyfor the seriesy= 5 andy= 6 (Ln = Y, La, Sm and Gd). This article establishes the angular dependence of the DOS on texture of arbitrary strength, links the textures observed by X-ray and γ-ray techniques, and solves the problem of disentanglement of the Goldanskii–Karyagin effect and texture in Mössbauer spectra.


1991 ◽  
Vol 35 (A) ◽  
pp. 57-62 ◽  
Author(s):  
C. J. Sparks ◽  
R. Kumar ◽  
E. D. Specht ◽  
P. Zschack ◽  
G. E. Ice ◽  
...  

AbstractThe effect of sample granularity on diffracted x-ray intensity was evaluated by measuring the 2θ dependence of x-ray fluorescence from various samples. Measurements were made in the symmetric geometry on samples ranging from single crystals to highly absorbing coarse powders. A characteristic shape for the absorption correction was observed. A demonstration of the sensitivity of Rietveld refined site occupation parameters is made on CuAu and Cu50Au44Ni6 alloys refined with and without granularity corrections. These alloys provide a good example of the effect of granularity due to their large linear x-ray absorption coefficients. Sample granularity and refined thermal parameters obtained from the Rietveld analysis were found to be correlated. Without a granularity correction, the refined thermal parameters are too low and can actually become negative in an attempt to compensate for granularity, A general shape for granularity correction can be included in refinement procedures. If no granularity correction is included, data should be restricted to above 30° 2θ, and thermal parameters should be ignored unless extreme precautions are taken to produce <5 (μm particles and high packing densities.


1988 ◽  
Vol 32 ◽  
pp. 83-87
Author(s):  
K. Omote ◽  
T. Arai

In the spectroscopic analysis of minor and trace elements by fluorescent X-rays, many improvements in the analytical performance of trace element measurements have been made. For the analysis of trace elements, the background intensity governs the analytical accuracy and the lowest detection limit in a sample. A comparison is made between experimental and theoretically calculated background X-ray intensities in a previous paper. It is based on the formula for scattered X-ray intensity, from the estimation of Thomson and Compton scattered X-rays. Also, the asymmetrical peak profiles at the base of the giant intensity peak are discussed and are clearly shown in the skirt part of K beta X-rays, e.g. , Ni-K beta or Fe-K beta X-rays. The purpose of this report is to investigate the intensity of background X-rays, using glass beads and powder samples of iron oxide and quartz, based on the previous fundamental studies and the overlapping correction procedure for cobalt determination in low-alloy and stainless steel.


2007 ◽  
Vol 71 (1) ◽  
pp. 93-104 ◽  
Author(s):  
G. Iezzi ◽  
G. Della Ventura ◽  
F. Bellatreccia ◽  
S. Lo Mastro ◽  
B. R. Bandli ◽  
...  

AbstractThree natural amphibole samples collected from the former vermiculite mine near Libby, Montana. USA, have been analysed by Rietveld X-ray powder diffraction (XRPD) refinement and Fourier transform infrared spectroscopy (FTIR) in the OH-stretching region. The same materials have been analysed previously by electron microprobe analysis (EMPA), Mössbauer spectroscopy and structure refinement (SREF) single crystal X-ray diffraction (SC-XRD), which revealed that these amphiboles have a crystal chemical formula very close to an intermediate composition between winchite and richterite, i.e. AA0.5BNaCaCMg4.5M3+T0.5Si8O22(OH)2 (A = Na and/or K; M3+ = Fe3+ and/or Al). The Rietveld analysis showed the powder samples used for the experiments here to be composed only of amphibole. This in turn allowed us to use FTIR OH-stretching data to derive cation ordering on these powder samples. The three FTIR spectra are quite similar and up to four components can be fitted to the patterns. The two lower-frequency components (labelled A and B) can be attributed to a local O(3)-H dipole surrounded by M(1)M(3)Mg3 and M(1)M(3)Mg2Fe2+; (respectively), an empty A site and rSi8 environments; on the contrary, the higher-frequency C and D bands indicate the presence of an occupied A site. The FTIR OH-stretching data alone allow us to calculate the site occupancy of the A, M(1)–M(3) and T sites with confidence, as compared with previously published data. By contrast M(4)- and M(2)-site occupancies are more difficult to evaluate. This study takes advantage of the large database of well characterized synthetic amphiboles, built over the last two decades. The comparison of vibrational spectroscopy data with micro-chemical and crystallographic data reported in this study demonstrate that the FTIR OH-stretching method alone is a valuable and rapid method to derive or at least sensibly constrain site occupancy for natural amphiboles. A much more detailed cation site occupancy can be obtained by combining micro-chemical and FTIR OH-stretching data.


1992 ◽  
Vol 25 (5) ◽  
pp. 589-610 ◽  
Author(s):  
R. J. Hill

The Commission on Powder Diffraction of the International Union of Crystallography has undertaken an intercomparison of Rietveld refinements performed with two `standard' PbSO4 powder diffraction patterns: a conventional (two-wavelength) X-ray pattern collected on a Bragg–Brentano diffractometer with Cu Kα radiation and a constant-wavelength neutron pattern collected on the D1A diffractometer at the Institut Laue–Langevin. The aims of this project were: (i) to evaluate a cross section of currently used Rietveld refinement software; (ii) to examine the range and effect of various strategies of Rietveld refinement; (iii) to assess the precision and accuracy (spread) of the parameters derived by Rietveld analysis. 23 participants provided 18 refinements with the X-ray data and 20 refinements with the neutron data, using 11 different Rietveld-analysis programs. Analysis of the submitted results shows that refinement strategies play a large part in determining the detailed outcome of a Rietveld refinement. The wide variation in the values of the agreement indices obtained in these studies of the same data sets highlights the need for standardization both of the refinement procedures and of the type of data included in the algorithms used for assessing the fit. The major factors limiting the accuracy of the derived PbSO4 crystal structure parameters were: (i) use of insufficiently flexible peak shape and/or background functions; (ii) elimination of the high-angle diffraction data from the refinement; (iii) inclusion of an insufficiently wide range of diffraction angles on either side of the centroid of each peak during the step intensity calculation; and, additionally for X-rays, (iv) simultaneous release of the O-atom site-occupancy and displacement parameters. Rietveld analysis of the PbSO4 X-ray powder diffraction data provided atomic coordinates and isotropic displacement parameters for the Pb and S atoms that are precise (i.e. have small e.s.d.s) and are in reasonable agreement with the values derived from a single crystal study (viz the spread of coordinates is over the range 0.007–0.042 Å). On the other hand, the `light' O-atom parameters show relatively poor precision and have a disconcertingly wide spread of values about the weighted mean (viz 0.12–0.19 Å for the coordinates). Despite the much lower intrinsic resolution of the neutron data (i.e. peak widths some four times those of the X-ray data), the coordinates and anisotropic displacement parameters obtained for the Pb and O atoms are very precise and have a relatively narrow distribution about the single-crystal results, namely 0.004–0.020 Å for the coordinates. The range of coordinates determined from the neutron data for the relatively `light' S atom is correspondingly larger, namely 0.024–0.043 Å, about equivalent to that obtained from the X-ray data. In general, and as expected, the e.s.d.s from the Rietveld analyses are substantially smaller than the observed inter-refinement variation of the unit-cell dimensions, atomic coordinates and isotropic displacement parameters by factors of up to, respectively, 17, 5 and 22 for X-rays, and 25, 3 and 5 for neutrons. This investigation indicates that results of possibly high precision but low accuracy are not uncommon in Rietveld analysis. The disparity between individual refinements can be expected to increase further when, unlike here, the analyses are undertaken using data sets collected under diverse experimental conditions.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 785
Author(s):  
Fahad A. AlAbduljabbar ◽  
Sajjad Haider ◽  
Fekri Abdulraqeb Ahmed Ali ◽  
Abdulaziz A. Alghyamah ◽  
Waheed A. Almasry ◽  
...  

In this study, polyacrylonitrile (PAN_P) nanofibers (NFs) were fabricated by electrospinning. The PAN_P NFs membrane was functionalized with diethylenetriamine to prepare a functionalized polyacrylonitrile (PAN_F) NFs membrane. TiO2 nanoparticles (NPs) synthesized in the laboratory were anchored to the surface of the PAN_F NFs membrane by electrospray to prepare a TiO2 NPs coated NFs membrane (PAN_Coa). A second TiO2/PAN_P composite membrane (PAN_Co) was prepared by embedding TiO2 NPs into the PAN_P NFs by electrospinning. The membranes were characterized by microscopic, spectroscopic and X-ray techniques. Scanning electron micrographs (SEM) revealed smooth morphologies for PAN_P and PAN_F NFs membranes and a dense cloud of TiO2 NPs on the surface of PAN_Coa NFs membrane. The attenuated total reflectance in the infrared (ATR-IR) proved the addition of the new amine functionality to the chemical structure of PAN. Transmission electron microscope images (TEM) revealed spherical TiO2 NPs with sizes between 18 and 32 nm. X-ray powder diffraction (XRD) patterns and energy dispersive X-ray spectroscopy (EDX) confirmed the existence of the anatase phase of TiO2. Surface profilometry da-ta showed increased surface roughness for the PAN_F and PAN_Coa NFs membranes. The adsorption-desorption isotherms and hysteresis loops for all NFs membranes followed the IV -isotherm and the H3 -hysteresis loop, corresponding to mesoporous and slit pores, respectively. The photocatalytic activities of PAN_Coa and PAN_Co NFs membranes against methyl orange dye degradation were evaluated and compared with those of bare TiO2 NPs.The higher photocatalytic activity of PAN_Coa membrane (92%, 20 ppm) compared to (PAN_Co) NFs membrane (41.64%, 20 ppm) and bare TiO2 (49.60%, 20 ppm) was attributed to the synergy between adsorption, lower band gap, high surface roughness and surface area.


1967 ◽  
Vol 11 ◽  
pp. 95-104 ◽  
Author(s):  
Toshio Shiraiwa ◽  
Nobukatsu Fujino

AbstractA micro fluorescent X-ray analyzer with a focusing type of spectrometer has been developed to analyze samples of small amounts such as extracted inclusions or precipitates from metals or small areas in samples from 0.1 to 2.0 mm in diameter. This instrument is expected especially to analyze powder samples of small quantity because average values from such samples can be obtained and because surface conditions of the samples scarcely affect the results compared with their effect in electron probs microanalysis. A commercial X-ray tube is combined with a device of slits limiting incident X-rays, a focusing spectrometer with a Rowland circle of 4-in. radius, and a microscope of low magnification for observing the analyzing point on the samples. The wavelength range of the spectrometer with LiF and ADP analyzing crystals is from 1.20 to 9.94 Å, and, therefore, higher elements than aluminum in atomic number can be analyzed. The authors exerted their efforts to obtain the higher X-ray intensities in order to analyze smaller areas. The X-ray intensities obtained are satisfactory, except for light elements. For example, the detected X-ray intensity of pure nickel is 1650 cps with the use of a 0.1-mm diameter specimen, and that of pure sulfur is 52 cps with the use of a 0.1-ramdiameter specimen; however, with a 1-mm-diameter specimen, the intensity of pure nickel is over 5000 cps and that of pure sulfur is 1650 cps. These correspond to the intensities from 20-mm-diameter specimens of those elements when a flat-crystal spectrometer is used. The calibration curve for quantitative analysis generally varies with the sample area under analysis, but the same curves are obtained if the sample area is larger than 1 mm in diameter. Then, powder samples are analyzed quantitatively by using a plastic sample holder of 1-mm diameter and 0.3-mm depth. This instrument has good ability for microanalyzing trace elements by, for example, the ion-exchenge membrane method. The sensitivity represented is nearly 5000 cps/μg for Ni Kα from NiSO4 that is soaked and dried in thin rice paper. Some applications of the micro fluorescent X-ray analyzer to precipitates in steels and corrosion products are reported.


Sign in / Sign up

Export Citation Format

Share Document