scholarly journals Comparison of the so-called CGR and NCR cathodes in commercial lithium-ion batteries using in situ neutron powder diffraction

2014 ◽  
Vol 29 (S1) ◽  
pp. S35-S39 ◽  
Author(s):  
Moshiul Alam ◽  
Tracey Hanley ◽  
Wei Kong Pang ◽  
Vanessa K. Peterson ◽  
Neeraj Sharma

The evolution of the 003 reflection of the layered Li(Ni,Co,Mn)O2 (CGR) and Li(Ni,Co,Al)O2 (NCR) cathodes in commercial 18650 lithium-ion batteries during charge/discharge were determined using in situ neutron powder diffraction. The 003 reflection is chosen as it is the stacking axis of the layered structure and shows the largest change during charge/discharge. The comparison between these two cathodes shows that the NCR cathode exhibits an unusual contraction near the charged state and during the potentiostatic step, where the potentiostatic step is recommended by the manufacturer. This feature is not shown to the same degree by the CGR cathode. The behavior is likely related to the compositions of these cathodes, the amount of Li/Ni site mixing and the presence of Al or Mn.

Author(s):  
William R. Brant ◽  
Siegbert Schmid ◽  
Guodong Du ◽  
Helen E. A. Brand ◽  
Wei Kong Pang ◽  
...  

2020 ◽  
Vol 1010 ◽  
pp. 314-320
Author(s):  
Mohamad Izha Ishak ◽  
Khairel Rafezi Ahmad ◽  
Rozana A.M. Osman ◽  
Mohd Sobri Idris

LiV3O8 layered structure was successfully synthesized by a conventional solid-state approach and subsequent heat-treated at 400, 450, 500 and 550 oC. The samples were characterized by XRD, SEM, TEM, BET. Electrochemical performance of LiV3O8 was investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge. The results showed that high purity of LiV3O8 with layered structure was formed. The morphology of the samples were mixed between nanorods and nanosheets structure. For electrochemical performance, results showed that LiV3O8 heat-treated at 500 oC performed a highest charge and discharge capacity of 212 and 172 mAh g-1, respectively. From electrochemical performance results made them a good candidate for cathode material for lithium-ion batteries application.


2015 ◽  
Vol 229 (9) ◽  
Author(s):  
Dennis Wiedemann ◽  
Suliman Nakhal ◽  
Anatoliy Senyshyn ◽  
Thomas Bredow ◽  
Martin Lerch

AbstractLayered titanium disulfide is used as lithium-ion intercalating electrode material in batteries. The room-temperature stable trigonal 1T polymorphs of the intercalates Li


2018 ◽  
Vol 2 (8) ◽  
pp. 1481-1488 ◽  
Author(s):  
Mohammad Akbari Garakani ◽  
Sara Abouali ◽  
Jiang Cui ◽  
Jang-Kyo Kim

Even with the many desirable properties, natural abundance and low cost of α-MnO2, its application as an anode in lithium-ion batteries has been limited because of its low intrinsic electrical conductivity and large volume expansion occurring during charge/discharge cycles.


RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37367-37376 ◽  
Author(s):  
Ting-Feng Yi ◽  
Jin-Zhu Wu ◽  
Mei Li ◽  
Yan-Rong Zhu ◽  
Ying Xie ◽  
...  

Ce and CeO2in situ modified Li4Ti5O12 with fast charge–discharge performance for lithium-ion batteries were prepared by a solid-state method. The improved performance are found to be due to the increased ionic and electronic conductivity.


Sign in / Sign up

Export Citation Format

Share Document