Weed Control in Soybean (Glycine max) with Lactofen Plus Chlorimuron

1993 ◽  
Vol 7 (2) ◽  
pp. 311-316 ◽  
Author(s):  
P. Roy Vidrine ◽  
Daniel B. Reynolds ◽  
James L. Griffin

Field experiments were conducted over a 3-yr period at three locations to evaluate lactofen at rates of 110 to 220 g ai ha−1applied POST in combination with chlorimuron at 9 g ae ha−1for weed control in soybean. At St. Joseph in 1989 and Baton Rouge in 1990, lactofen at 110, 150, and 170 g ha−1in combination with chlorimuron controlled prickly sida (3 to 5 cm) and entireleaf and pitted morningglory (5 to 13 cm) comparable with the full rate of lactofen at 220 g ha−1plus chlorimuron and the standard treatment of acifluorfen at 280 g ae ha−1plus bentazon at 560 g ae ha−1. Entireleaf morningglory and sicklepod control at Alexandria with lactofen at 110 to 170 g ha−1plus chlorimuron was comparable with that from the full rate of lactofen plus chlorimuron and better than with acifluorfen plus bentazon. Weed control was reduced when soil moisture was deficient at treatment time or when prickly sida height was more than 5 cm and entireleaf morningglory, pitted morningglory, and sicklepod more than 15 cm. In related studies at St. Joseph, a reduced rate of lactofen (170 g ha−1) in combination with chlorimuron controlled prickly sida 98%, pitted morningglory 93%, and entireleaf morningglory 90% in 1988, which was comparable with the control from the full rate of lactofen plus chlorimuron and with acifluorfen plus bentazon.

1998 ◽  
Vol 12 (2) ◽  
pp. 268-274 ◽  
Author(s):  
Robert C. Scott ◽  
David R. Shaw ◽  
Randall L. Ratliff ◽  
Larry J. Newsom

Greenhouse and field experiments were conducted to evaluate early postemergence (POST) tank mixtures of SAN 582 with fluazifop-P, imazethapyr, or sethoxydim. In the greenhouse, SAN 582 synergistically improved barnyardgrass, broadleaf signalgrass, and johnsongrass control from imazethapyr and sethoxydim. Half-rates of imazethapyr and sethoxydim tank-mixed with SAN 582 controlled grass weeds as well as full rates of either herbicide applied alone. Grass weed control with imazethapyr increased up to 40% with the addition of SAN 582. In field experiments, SAN 582 increased grass control with imazethapyr to a lesser degree than observed in the greenhouse. In a multispecies study, grass weed control increased up to 15% when SAN 582 was tank-mixed with a reduced rate of imazethapyr, although the full rate of imazethapyr applied POST with or without SAN 582 controlled grass weeds 80% or less. The combination of SAN 582 with sethoxydim was synergistic for barnyardgrass and johnsongrass control in this experiment. When applied POST in soybean, SAN 582 plus fluazifop-P or sethoxydim controlled barnyardgrass throughout the season better than a single POST application of a graminicide.


1994 ◽  
Vol 8 (1) ◽  
pp. 23-27 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
Leslie D. Fortner

Field experiments conducted in 1988 and 1989 evaluated clomazone alone and in a systems approach for weed control in peanut. Clomazone PPI at 0.8 kg ai/ha controlled common ragweed, prickly sida, spurred anoda, and tropic croton better than ethalfluralin and/or metolachlor applied PPI. POST application of acifluorfen plus bentazon was not needed to control these weeds when clomazone was used. Acifluorfen plus bentazon improved control of these weeds when clomazone was not used and generally were necessary to obtain peanut yields regardless of the soil-applied herbicides. Alachlor PRE did not improve clomazone control of any weed species evaluated. Fall panicum and large crabgrass control was similar with clomazone or clomazone plus ethalfluralin.


Weed Science ◽  
1995 ◽  
Vol 43 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Alan C. York ◽  
John W. Wilcut ◽  
Charles W. Swann ◽  
David L. Jordan ◽  
F. Robert Walls

Experiments conducted in North Carolina and Virginia compared weed control, peanut yield, and net returns with systems using imazethapyr applied at various times and the regional standard treatment of paraquat applied at the ground-cracking stage of peanut (GC) followed by acifluorfen plus bentazon applied POST. Imazethapyr was applied PPI, PRE, GC, or POST at 70 g ae ha−1. Imazethapyr also was applied sequentially PPI plus GC, PPI plus POST, and PRE plus POST at 35 + 35 and 70 + 70 g ha−1. Late-season control of common ragweed and a mixture of entireleaf, ivyleaf, and pitted morningglories by the standard treatment ranged from 85 to 100%. Spurred anoda was controlled 80%, and common lambsquarters and prickly sida were controlled completely. Control of common lambsquarters, prickly sida, and morningglory by imazethapyr applied one or more times was similar to control by the standard. Control by imazethapyr exceeded that by the standard only for spurred anoda. The most effective time for applying imazethapyr varied by species and locations. Imazethapyr was equally effective on common lambsquarters and spurred anoda when applied PPI, PRE, or GC. Prickly sida and morningglory were controlled best when imazethapyr was applied PPI or PRE and GC, respectively. Common ragweed was controlled poorly with single applications of imazethapyr. Applying imazethapyr sequentially improved consistency of control across the range of species. In most cases, imazethapyr applied sequentially at 35 + 35 g ha−1controlled all weeds as well as or better than when applied once at 70 g ha−1. Overall, imazethapyr at the registered rate of 70 g ha−1was most effective when applied PPI at 35 g ha−1followed by 35 g ha−1at GC. Except for common ragweed, weed control with this treatment was similar to that by the standard. Peanut yield and net returns with this treatment were similar to those with the standard at three of four locations.


1997 ◽  
Vol 11 (2) ◽  
pp. 354-362 ◽  
Author(s):  
David L. Jordan ◽  
Alan C. York ◽  
James L. Griffin ◽  
Patrick A. Clay ◽  
P. Roy Vidrine ◽  
...  

Field experiments were conducted from 1993 to 1995 to compare weed control by the isopropylamine salt of glyphosate at 0.21, 0.42, 0.63, and 0.84 kg ae/ha applied at three stages of weed growth. Weed control by glyphosate applied at these rates alone or with ammonium sulfate at 2.8 kg/ha was also evaluated. In other experiments, potential interactions between glyphosate and acifluorfen, chlorimuron, and 2,4-DB were evaluated. Velvetleaf, prickly sida, sicklepod, pitted morningglory, entireleaf morningglory, palmleaf morningglory, and hemp sesbania were controlled more easily when weeds had one to three leaves compared with control when weeds had four or more leaves. Glyphosate controlled redroot pigweed, velvetleaf, prickly sida, sicklepod, and barnyardgrass more effectively than pitted morningglory, entireleaf morningglory, palmleaf morningglory, or hemp sesbania. Increasing the rate of glyphosate increased control, especially when glyphosate was applied to larger weeds. Greater variation in control was noted for pitted morningglory, palmleaf morningglory, prickly sida, and velvetleaf than for redroot pigweed, sicklepod, entireleaf morningglory, or hemp sesbania. Ammonium sulfate increased prickly sida and entireleaf morningglory control but did not influence sicklepod, hemp sesbania, or barnyardgrass control. Acifluorfen applied 3 d before glyphosate or in a mixture with glyphosate reduced barnyardgrass control compared with glyphosate applied alone. Chlorimuron did not reduce efficacy. Mixtures of glyphosate and 2,4-DB controlled sicklepod, entireleaf morningglory, and barnyardgrass similar to glyphosate alone.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 541-545 ◽  
Author(s):  
Lawrence E. Steckel ◽  
Michael S. Defelice ◽  
Barry D. Sims

The interaction of reduced rates of bentazon, chlorimuron, imazaquin, and imazethapyr with cultivation for broadleaf weed control in soybeans was investigated in field experiments conducted at three sites in Missouri in 1987 and 1988. Single reduced-rate herbicide applications provided soybean yields equal to full rates although visual weed control was slightly lower. Sequential applications of all four herbicides at reduced rates provided weed control and soybean yields equal to full-rate applications. The number of velvetleaf plants m−2and seeds plant−1were not influenced by herbicide, herbicide rate, or application timing. Cultivation improved weed control and soybean yield and decreased late-season weed populations and seed production.


1994 ◽  
Vol 8 (4) ◽  
pp. 684-688 ◽  
Author(s):  
David E. Hydrick ◽  
David R. Shaw

Field experiments were established in 1991 and 1992 on silty clay and sandy loam soils to evaluate various split rates of early PPI and PRE (to soybean) selective herbicides with and without paraquat for sicklepod and pitted morningglory control in stale seedbed soybean. Metribuzin at 360 g ai/ha plus 60 g ai/ha chlorimuron tank-mixed with 700 g ai/ha paraquat controlled sicklepod and pitted morningglory 83 and 91%, respectively, 4 wk after planting. Without paraquat, sicklepod and pitted morningglory control was only 65% and 67%, respectively. Imazaquin at 140 g/ha PRE tank-mixed with paraquat controlled sicklepod 78% and pitted morningglory 92%. Without paraquat, control was 38% and 84%, respectively. Early PPI applications of metribuzin plus chlorimuron or imazaquin at the full rate alone or followed by paraquat at planting resulted in poor control. With sequential treatments (PPI followed by PRE) the addition of paraquat at planting did not usually improve control, and either imazaquin or metribuzin plus chlorimuron provided equivalent control when compared with the full rate of either herbicide applied PRE. Season-long weed control was not obtained with any treatment in any experiment, and the crop was not harvestable.


2007 ◽  
Vol 21 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Clifford H. Koger ◽  
Ian C. Burke ◽  
Donnie K. Miller ◽  
J. Andrew Kendig ◽  
Krishna N. Reddy ◽  
...  

Field and greenhouse studies were conducted to investigate the compatibility of MSMA in a tank mixture with glyphosate or glufosinate for broadleaf and grass weed control. Glyphosate, glufosinate, and MSMA were evaluated at 0.5×, 1×, and 2× rates, with 1× rates of 0.84 kgae/ha, 0.5 kgai/ha, and 2.2 kgai/ha, respectively. Glyphosate and glufosinate provided similar levels of control for most weed species and were often more efficacious than MSMA alone. Glyphosate controlled Palmer amaranth better than glufosinate. Glufosinate controlled hemp sesbania, pitted morningglory, and ivyleaf morningglory better than glyphosate at one location. Weed control was not improved with the addition of MSMA to glyphosate or glufosinate when compared with either herbicide alone. MSMA antagonized glyphosate efficacy on barnyardgrass, browntop millet, hemp sesbania, Palmer amaranth, and redroot pigweed. MSMA antagonized glufosinate efficacy on browntop millet, hemp sesbania, ivyleaf morningglory, johnsongrass, Palmer amaranth, pitted morningglory, prickly sida, redroot pigweed, and velvetleaf. Antagonism of glyphosate or glufosinate by MSMA was often overcome by applying the 2× rate of either herbicide alone. MSMA is not a compatible tank-mixture partner with glyphosate or glufosinate for weed control in cotton.


2008 ◽  
Vol 22 (3) ◽  
pp. 459-466 ◽  
Author(s):  
Andrew J. Price ◽  
Clifford H. Koger ◽  
John W. Wilcut ◽  
Donnie Miller ◽  
Edzard Van Santen

Field experiments were conducted to evaluate weed control provided by glyphosate, glufosinate, and MSMA applied alone or in mixture with residual and nonresidual last application (LAYBY) herbicides. Herbicide treatments included glyphosate early postemergence (EPOST) alone or followed by glyphosate, glufosinate, or MSMA late-postemergence (LPOST) alone or tank-mixed with one of the following LAYBY herbicides: carfentrazone-ethyl at 0.3 kg ai/ha, diuron at 1.12 kg ai/ha, flumioxazin at 0.07 kg ai/ha, fluometuron at 1.12 kg ai/ha, lactofen at 0.84 kg ai/ha, linuron at 0.56 kg ai/ha, oxyfluorfen at 1.12 kg ai/ha, prometryn at 1.12 kg ai/ha, or prometryn + trifloxysulfuron at 1.12 kg ai/ha + 10 g ai/ha. Residual herbicides were also applied alone LPOST. Weeds evaluated included barnyardgrass, broadleaf signalgrass, coffee senna, entireleaf morningglory, hemp sesbania, ivyleaf morningglory, johnsongrass, large crabgrass, Palmer amaranth, pitted morningglory, prickly sida, redroot pigweed, sicklepod, smooth pigweed, spiny amaranth, and velvetleaf. Treatments containing MSMA provided lower average weed control compared to those containing glyphosate or glufosinate, and residual herbicides applied alone provided inadequate weed control compared to mixtures containing a nonresidual herbicide. Across 315 of 567 comparisons (55%), when a LAYBY herbicide was added, weed control increased. The most difficult to control weed species at all locations was pitted morningglory. Barnyardgrass and hemp sesbania at the Mississippi location and hemp sesbania at the Louisiana location were collectively difficult to control across all treatments as well.


1993 ◽  
Vol 7 (4) ◽  
pp. 816-823 ◽  
Author(s):  
Lawrence R. Oliver ◽  
Tracy E. Klingaman ◽  
Marilyn McClelland ◽  
Robert C. Bozsa

Field experiments were conducted using a stale seedbed production system to determine the effect of herbicide application time on preplant, preplant incorporated (PPI), and at-planting treatments on weed control and soybean yield. Herbicides were applied on the surface preplant (PPL) or PPI at 6 to 7, 4 to 5, and 2 to 3 wk before planting and just prior to planting. The differences in weed control and soybean yield among years were due to rainfall patterns 2 wk after herbicide application and during the growing season. Preplant treatments applied 2 to 5 wk before planting generally controlled common cocklebur and pitted morningglory better than preplant treatments applied 6 to 7 wk before planting due to persistence of herbicide activity or treatments at planting due to a greater chance of obtaining adequate rainfall for herbicide activation, more uniform seedbed at planting, and larger weeds at application. Metribuzin plus chlorimuron was less suited than imazaquin as a preplant treatment when applied more than 2 weeks before planting.


1989 ◽  
Vol 16 (2) ◽  
pp. 87-91 ◽  
Author(s):  
T. C. Mueller ◽  
P. A. Banks

Abstract RE-40885 (5-(methylamino)-2-phenyl-4-3-(trifluoromethyl phenyl)-3(2H)-furanone), a newly developed herbicide with soil and foliar activity, was evaluated for weed control in peanuts (Arachis hypogea L.). RE-40885 applied to the soil or foliage provided excellent Florida beggarweed (Desmodium tortuosum (Sw.) DC.) and prickly sida (Sida spinosa L.) control at rates of 0.56 to 1.12 kg ai/ha. Sequential applications of RE-40885 were needed to achieve > 90% sicklepod (Cassia obtusifolia L.) control. Texas panicum (Panicum texanum Buckl.) was not adequately controlled by any of the RE-40885 treatments evaluated. Peanuts were not injured by RE-40885 at any of the evaluated rates or application times. The combination of RE-40885 and 2,4-DB applied early postemergence improved sicklepod control 8 weeks after planting when compared to either RE-40885 or 2,4-DB applied alone. The combination of R E-40885 and alachlor applied at peanut emergence improved morningglory (Ipomoea spp.) control 8 weeks after planting and increased peanut yield when compared to either applied alone. All treatments containing RE-40885 resulted in peanut yields that were significantly better than nontreated weedy control plots.


Sign in / Sign up

Export Citation Format

Share Document