Chlorsulfuron and Metsulfuron Residues on Double-Cropped Soybeans (Glycine max)

1988 ◽  
Vol 2 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Ronald L. Ritter ◽  
Thomas C. Harris ◽  
Lisa M. Kaufman

In field experiments in 1981, 36 g ai/ha of chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] benzenesulfonamide} applied to winter wheat (Triticum aestivumL. ‘Arthur’) in early spring reduced seed yield in conventional and no-till plantings of double-cropped soybeans [Glycine max(L.) ‘Essex’]. From 1982 to 1984, three rates of chlorsulfuron (9, 18, and 36 g/ha) were applied at three different times (preemergence, early winter, and early spring) to study their residual effects on double-cropped soybeans. Chlorsulfuron at 36 g/ha applied preemergence or early spring reduced soybean seed yields when averaged over the 3-yr period. Metsulfuron {2-[[[[(4-methoxy-6-methyl-1,3,5-triazine-2-yl)amino] carbonyl] amino] sulfonyl] benzoic acid} was tested at three rates (4.5, 9, and 18 g/ha) applied at three times (same as chlorsulfuron) in field studies in 1983 and 1984. Metsulfuron did not injure subsequently planted no-till soybeans.

1992 ◽  
Vol 6 (1) ◽  
pp. 119-124 ◽  
Author(s):  
Larry G. Heatherly ◽  
C. Dennis Elmore ◽  
Richard A. Wesley

Field studies were conducted for three consecutive years to determine if PRE and/or POST herbicides were needed in addition to preplant foliar-applied glyphosate and POST cultivation for maximum seed yield of irrigated and nonirrigated soybean planted in stale and undisturbed seedbeds on clay soil. Soybean seed yields following the use of PRE and POST herbicides alone or in combination were similar in all years, and exceeded seed yield following the use of glyphosate plus POST cultivation only. Plantings made in no-till and fall-till seedbeds produced similar seed yields when both PRE and POST herbicides were used. These results indicate that glyphosate plus cultivation was not adequate for soybean in stale seedbed plantings, and that either PRE or POST herbicides, but not both, were required for maximum seed yield.


1992 ◽  
Vol 38 (6) ◽  
pp. 588-593 ◽  
Author(s):  
D. J. Hume ◽  
D. H. Blair

In the absence of Bradyrhizobium japonicum populations in the soil, yields of field-grown soybean (Glycine max (L.) Merrill) usually respond to inoculation with B. japonicum. The objective of this research was to determine the relationship between numbers of B. japonicum per seed in inoculants and soybean nodulation and yield. A total of six field experiments were conducted in 1989 and 1990 on new soybean soils. In dilution trials, Grip inoculant was applied to provide approximately 106, 105, 104, and 103B. japonicum per seed at two locations in 1989. Nodule number and mass, as well as seed yield, increased curvilinearly upward with increasing log10 most probable numbers (MPNs) of B. japonicum. The yield response curve was best fit by a cubic equation, which accounted for 97% of the variation in yield. Seed yields increased 19% (1.83 to 2.13 Mg/ha) from 105 to 106B. japonicum per seed. In field experiments involving 8 commercial inoculants in 1989 and 10 in 1990, and conducted at two locations in each year, responses to increasing log MPNs in the inoculants also were concave upwards and cubic. In the two years, 78 and 46% of the yield variation was accounted for by log MPN per seed. Increasing MPN per seed from 105 to 106 improved yields in first-time fields by an average of 24%, indicating the present minimum standard of 105B. japonicum per seed should be increased. Key words: most probable numbers, response to inoculation, nodulation, Glycine max (L.) Merrill.


1992 ◽  
Vol 6 (4) ◽  
pp. 990-995 ◽  
Author(s):  
Daniel H. Poston ◽  
Edward C. Murdock ◽  
Joe E. Toler

Field studies were conducted in 1988 and 1989 to examine the interrelations of cultivation and herbicide band width in controlling pitted morningglory and sicklepod in soybean. Alachlor + imazaquin PRE followed by imazaquin + surfactant POST were not applied or were applied on bands 15, 30, 45, 60, 75 cm wide or were broadcast. Plots were cultivated zero, one, two, or three times. Without cultivation, at least a 60-cm wide band was needed to achieve maximum soybean seed yields. A slight linear increase in soybean seed yield in response to increasing band width was observed with one cultivation. With two cultivations, soybean seed yields were similar with and without herbicides, but a 15-cm wide herbicide band was needed to achieve maximum production with three cultivations. Greatest gross returns exclusive of weed management costs were realized with two or three cultivations and a 15-cm wide band.


Weed Science ◽  
1988 ◽  
Vol 36 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Jeffery M. Higgins ◽  
Ted Whitwell ◽  
Edward C. Murdock ◽  
Joe E. Toler

Field experiments were conducted during 1985 and 1986 to determine the response of soybean [Glycine max(L.) Merr. ‘Coker 156’], pitted morningglory (Ipomoea lacunosaL. # IPOLA), and ivyleaf morningglory [Ipomoea hederacea(L.) Jacq. # IPOHE] to acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid}, fomesafen {5-[2-chloro-4-(trifluoromethyl) phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide}, and lactofen {(±)-2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-dinitrobenzoate}. Acifluorfen and lactofen were more phytotoxic to soybean 15 days after treatment (DAT) than fomesafen. All herbicides at low rates controlled 80% or more pitted morningglory. However, only the high rates (0.6 kg ai/ha) of acifluorfen and fomesafen controlled 80% or more ivyleaf morningglory 90 DAT. Full-season competition from untreated pitted morningglory reduced soybean seed yields 44 and 22% in 1985 and 1986, respectively, compared to 58 and 49% with untreated ivyleaf morningglory. Soybean seed yields were higher in plots receiving acifluorfen or fomesafen applications than lactofen applications.


Weed Science ◽  
1986 ◽  
Vol 34 (4) ◽  
pp. 590-594 ◽  
Author(s):  
Henry P. Wilson ◽  
Martin P. Mascianica ◽  
Thomas E. Hines ◽  
Ronald F. Walden

Field studies were conducted for 4 yr to investigate the effects of tillage and herbicide programs on weed control and wheat (Triticum aestivumL. ‘Potomac’ in 1981 and ‘Wheeler’ from 1982 to 1984) grain yields in a wheat-soy bean [Glycine max(L.) Merr.] double-crop rotation. Predominant weed species were common chickweed [Stellaria media(L.) Vill. # STEME], corn chamomile (Anthemis arvensisL. # ANTAR), and annual bluegrass (Poa annuaL. # POAAN) at the onset of research and cheat (Bromus secalinusL. # BROSE) and soft brome (Bromus mollisL. # BROMO) at the conclusion of the study. Control of all species was excellent with conventional tillage and no-till plus nonselective herbicides but was significantly less with no-till without nonselective herbicides and with minimum tillage. After 4 yr, maximum wheat grain yields were significantly higher in conventional- than in minimum- or no-till systems.


1998 ◽  
Vol 12 (1) ◽  
pp. 32-36 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. Defelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to combinations of glyphosate, metolachlor, 0.5 X and 1 X label rates of chlorimuron plus metribuzin applied prior to planting (PP), and 0.5 X and 1 X label rates of imazethapyr applied early postemergence (EPOST) or postemergence (POST) in no-till narrow-row soybean production. Giant foxtail densities were reduced with sequential PP followed by (fb) EPOST or POST treatments. Large crabgrass was reduced equivalently with all herbicide combinations involving chlorimuron plus metribuzin PP fb imazethapyr. Common cocklebur control was variable but was usually greater with treatments that included imazethapyr. Ivyleaf morningglory densities were not reduced with any herbicide combinations. Sequential PP fb EPOST or POST treatments tended to provide slightly better weed suppression than PP-only treatments, but the difference was rarely significant. Soybean yields with treatments utilizing 0.5 X rates were usually equal to 1 X rates.


Weed Science ◽  
1987 ◽  
Vol 35 (6) ◽  
pp. 784-791 ◽  
Author(s):  
Peter H. Sikkema ◽  
Jack Dekker

Field experiments were conducted during 1981 and 1982 in Ontario, Canada, on the effects of quackgrass [Agropyron repens(L.) Beauv. # AGRRE] interference in soybean [Glycine max(L.) Merr.] and the usefulness of infrared thermometry in predicting critical periods of weed interference. Soybean seed yield, dry weight, number of leaves, height, and number of pods were substantially reduced due to quackgrass interference. High levels of P and K fertility did not overcome the quackgrass interference. Part of the competitive effects of quackgrass was alleviated by irrigation. Infrared thermometry successfully detected the first occurrence of quackgrass-induced stress during the early soybean flowering stage, when the quackgrass was in the four-leaf gtowth stage. This coincided with the onset of the first significant soybean yield loss. No additional soybean yield loss occurred after quackgrass reached the five-leaf growth stage. There was an inverse relation between accumulated stress degree days and soybean yield reductions due to quackgrass interference. The use of the stress degree day concept may be a valuable tool in predicting soybean yield losses due to quackgrass interference.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 233-238 ◽  
Author(s):  
J. Anthony Mills ◽  
William W. Witt

Field experiments were conducted to evaluate the interactions of tillage systems with imazaquin and imazethapyr on weed control and soybean injury and yield. Control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail from imazaquin and imazethapyr in conventional tillage was generally equal to or greater than control in no-tillage. However, under limited rainfall, weed control in no-tillage was generally equal to or greater than control in conventional tillage. Reductions in soybean heights due to herbicide treatment were evident in both tillage systems in 1985 and 1986 but not in. Soybean yields were reduced in 1985 from imazaquin at 140, 210, and 250 g/ha and imazethapyr at 105 and 140 g/ha. Yields were not reduced in 1986 and. Imazaquin and imazethapyr appear to provide adequate control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail in conventional and no-till systems.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 105-110 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. DeFelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to metolachlor plus combinations of 0.5 × and 1 × label rates of imazaquin applied preplant and imazethapyr applied early postemergence or postemergence in no-till narrow-row soybean production. Giant foxtail, common ragweed, common cocklebur, and large crabgrass population reductions were greater with sequential preplant metolachlor plus imazaquin followed by early postemergence or postemergence imazethapyr than with preplant metolachlor plus imazaquin or early postemergence/postemergence imazethapyr alone. Ivyleaf morningglory was not effectively controlled by any herbicide program. Pennsylvania smartweed populations were reduced with all herbicide treatments. Soybean yields with treatments utilizing 0.5 × rates were usually equal to 1 × rates if imazethapyr was applied early postemergence or postemergence. Net income with reduced herbicide rates was equal to full-label rates and provided no greater risk to net income.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 293-298 ◽  
Author(s):  
R. N. Stougaard ◽  
George Kapusta ◽  
Gordon Roskamp

Several field studies were conducted during 1981 and 1982 to determine whether early preplant (EPP) applications of residual herbicides would prevent the establishment of vegetation before planting no-till soybeans [Glycine max(L.) Merr. ‘Williams’]. Early preplant applications of either cyanazine {2-[[4-chloro-6-(ethylamino)-s-triazin-2-yl] amino]-2-methylpropionitrile} or cyanazine plus oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide) were applied in the fall and 3, 2, and 1 month(s) before planting no-till soybeans. In all studies, the treatments prevented vegetation from becoming established before planting, and season-long weed control was achieved with several different treatments. Early preplant cyanazine plus oryzalin provided greater than 90% control for the entire season where grass densities were low. Where grass densities were high (greater than 90% ground cover), EPP cyanazine plus a preemergence application of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] plus metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] or a postemergence application of sethoxydim {2-[1-(ethoxyimino) butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one} controlled 90% of the weeds, which was equal to or better than the standard preemergence treatments used (80 to 98% weed control).


Sign in / Sign up

Export Citation Format

Share Document