Recovery of Pitted Morningglory (Ipomoea lacunosa) and Ivyleaf Morningglory (Ipomoea hederacea) Following Applications of Acifluorfen, Fomesafen, and Lactofen

Weed Science ◽  
1988 ◽  
Vol 36 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Jeffery M. Higgins ◽  
Ted Whitwell ◽  
Edward C. Murdock ◽  
Joe E. Toler

Field experiments were conducted during 1985 and 1986 to determine the response of soybean [Glycine max(L.) Merr. ‘Coker 156’], pitted morningglory (Ipomoea lacunosaL. # IPOLA), and ivyleaf morningglory [Ipomoea hederacea(L.) Jacq. # IPOHE] to acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid}, fomesafen {5-[2-chloro-4-(trifluoromethyl) phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide}, and lactofen {(±)-2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-dinitrobenzoate}. Acifluorfen and lactofen were more phytotoxic to soybean 15 days after treatment (DAT) than fomesafen. All herbicides at low rates controlled 80% or more pitted morningglory. However, only the high rates (0.6 kg ai/ha) of acifluorfen and fomesafen controlled 80% or more ivyleaf morningglory 90 DAT. Full-season competition from untreated pitted morningglory reduced soybean seed yields 44 and 22% in 1985 and 1986, respectively, compared to 58 and 49% with untreated ivyleaf morningglory. Soybean seed yields were higher in plots receiving acifluorfen or fomesafen applications than lactofen applications.

Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 813-818 ◽  
Author(s):  
Michele A. Barker ◽  
Lafayette Thompson ◽  
F. Michael Godley

Field studies were conducted in North Carolina in 1981 and 1982 to evaluate the efficacy of postemergence over-the-top and postemergence-directed herbicides for control of five morningglory species: entireleaf [Ipomoea hederacea(L.) Jacq. var.integriusculaGray], tall [Ipomoea purpurea(L.) Roth. ♯3PHBPU], ivyleaf [Ipomoea hederacea(L.) Jacq. var.hederacea♯IPOHE], pitted [Ipomoea lacunosa(L.) ♯ IPOLA], and scarlet [Ipomoea coccinea(L.) ♯IPOCC]. The glabrous morningglories (scarlet and pitted) were more easily controlled than the pubescent morningglories (ivyleaf, tall, and entireleaf). Lower soybean injury, higher morningglory control, and greater soybean seed yields were obtained with over-the-top herbicide applications at 4 weeks after planting (WAP) than at 6 WAP. Pitted morningglory was tolerant to low rates of 2,4-DB [4-(2,4-dichlorophenoxy) butyric acid]. This herbicide applied over the top at the R1 stage of soybean growth produced low yields, probably as a result of morningglory interference and herbicide injury to the soybeans. Postemergence-directed applications of linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] and metribuzin [4-amino-6-tert-butyl-3-(methylthio-as-triazin-5(4H)-one] alone or in tank mixtures with 2,4-DB resulted in soybean injury that ranged from 12 to 36%. Highest soybean seed yields (equivalent to weed-free control) from postemergence-directed herbicides were obtained with applications of 2,4-DB, linuron, and a tank mixture of metribuzin and 2,4-DB.


Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 711-717 ◽  
Author(s):  
Edward C. Murdock ◽  
Philip A. Banks ◽  
Joe E. Toler

‘Ransom’, ‘Govan’, and ‘Bragg’ soybeans [Glycine max(L.) Merr.] were seeded in 30-, 61-, and 91-cm row spacings to achieve a uniform population of 323 000 plants/ha. In 1979 and 1980, shade development within the row was similar for all row spacings, but 15 cm from the row the inflection point occurred earlier when soybeans were seeded at the 30-cm row spacing. In 1979, shading 30 cm from the row was similar with the 61- and 91-cm row spacings, but in 1980 the 61-cm row spacing provided earlier shading. Shading within the row and 15 and 30 cm from the row was similar for all cultivars in 1979, but Govan and Bragg shaded row middles earlier than Ransom at the 91-cm row spacing. In 1980, shade development in the row was similar for all cultivars, but delayed shading was observed between the rows with Ransom. In 1979, maximum soybean seed yields were produced with 2, 2, and 0 weed-free weeks at the 30-, 61-, and 91-cm row spacings, respectively. In 1980, 2 weed-free weeks prevented soybean seed yield reductions at all row spacings. In 1979, Ransom, Bragg, and Govan required 4, 2, and 0 weed-free weeks, respectively, for maximum seed yields. In 1980, all cultivars achieved maximum seed yields with 2 weed-free weeks.


Weed Science ◽  
1980 ◽  
Vol 28 (4) ◽  
pp. 409-415 ◽  
Author(s):  
W. D. Mathis ◽  
L. R. Oliver

A 4-yr field test was initiated in 1975 to determine susceptibility of a natural infestation of six morningglory species to herbicides which can be applied to the soil and foliage in soybeans [Glycine max(L.) Merr.]. The species studied were pitted morningglory (Ipomoea lacunosaL.), entireleaf morningglory [Ipomoea hederacea(L.) Jacq. var.integriuscula], ivyleaf morningglory [Ipomoea hederacea(L.) Jacq.], purple moonflower [Ipomoea muricata(L.) Jacq.], palmleaf morningglory [Ipomoea wrightii(Gray)], and small flower morningglory [Jacquemontia tamnifolia(L.) Griseb.]. Control with herbicides applied preplant incorporated and preemergence was dependent on morningglory species and on rainfall to allow plant uptake of the herbicide. Herbicides applied to the soil were not as effective as those applied postemergence. Oxadiazon [2-tert-butyl-4-(2,4-dichloro-5-isopropoxyphenyl)-δ2-1,3,4-oxadiazolin-5-one] gave the best and longest lasting preemergence control, averaging 79% control for all species. Preemergence control with metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] was dependent on species, with 84% control of small flower morningglory and only 26% for ivyleaf and 18% for entireleaf morningglory. At V2 (one trifoliolate) and V5 stages of soybean growth, acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid} at 0.56 kg/ha applied over-the-top and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] at 0.28 kg/ha applied post-directed gave 90 and 92% control of all species, respectively. Most effective were repeated post-directed applications at V5 and V7 stages of soybean growth. Metribuzin + 2,4-DB [4-(2,4-dichlorophenoxy)butyric acid] (99%), linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] + 2,4-DB (98%), 2,4-DB (95%), and paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) + 2,4-DB (93%) provided excellent control regardless of the morningglory species.


1992 ◽  
Vol 38 (6) ◽  
pp. 588-593 ◽  
Author(s):  
D. J. Hume ◽  
D. H. Blair

In the absence of Bradyrhizobium japonicum populations in the soil, yields of field-grown soybean (Glycine max (L.) Merrill) usually respond to inoculation with B. japonicum. The objective of this research was to determine the relationship between numbers of B. japonicum per seed in inoculants and soybean nodulation and yield. A total of six field experiments were conducted in 1989 and 1990 on new soybean soils. In dilution trials, Grip inoculant was applied to provide approximately 106, 105, 104, and 103B. japonicum per seed at two locations in 1989. Nodule number and mass, as well as seed yield, increased curvilinearly upward with increasing log10 most probable numbers (MPNs) of B. japonicum. The yield response curve was best fit by a cubic equation, which accounted for 97% of the variation in yield. Seed yields increased 19% (1.83 to 2.13 Mg/ha) from 105 to 106B. japonicum per seed. In field experiments involving 8 commercial inoculants in 1989 and 10 in 1990, and conducted at two locations in each year, responses to increasing log MPNs in the inoculants also were concave upwards and cubic. In the two years, 78 and 46% of the yield variation was accounted for by log MPN per seed. Increasing MPN per seed from 105 to 106 improved yields in first-time fields by an average of 24%, indicating the present minimum standard of 105B. japonicum per seed should be increased. Key words: most probable numbers, response to inoculation, nodulation, Glycine max (L.) Merrill.


1992 ◽  
Vol 6 (4) ◽  
pp. 990-995 ◽  
Author(s):  
Daniel H. Poston ◽  
Edward C. Murdock ◽  
Joe E. Toler

Field studies were conducted in 1988 and 1989 to examine the interrelations of cultivation and herbicide band width in controlling pitted morningglory and sicklepod in soybean. Alachlor + imazaquin PRE followed by imazaquin + surfactant POST were not applied or were applied on bands 15, 30, 45, 60, 75 cm wide or were broadcast. Plots were cultivated zero, one, two, or three times. Without cultivation, at least a 60-cm wide band was needed to achieve maximum soybean seed yields. A slight linear increase in soybean seed yield in response to increasing band width was observed with one cultivation. With two cultivations, soybean seed yields were similar with and without herbicides, but a 15-cm wide herbicide band was needed to achieve maximum production with three cultivations. Greatest gross returns exclusive of weed management costs were realized with two or three cultivations and a 15-cm wide band.


1988 ◽  
Vol 2 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Ronald L. Ritter ◽  
Thomas C. Harris ◽  
Lisa M. Kaufman

In field experiments in 1981, 36 g ai/ha of chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] benzenesulfonamide} applied to winter wheat (Triticum aestivumL. ‘Arthur’) in early spring reduced seed yield in conventional and no-till plantings of double-cropped soybeans [Glycine max(L.) ‘Essex’]. From 1982 to 1984, three rates of chlorsulfuron (9, 18, and 36 g/ha) were applied at three different times (preemergence, early winter, and early spring) to study their residual effects on double-cropped soybeans. Chlorsulfuron at 36 g/ha applied preemergence or early spring reduced soybean seed yields when averaged over the 3-yr period. Metsulfuron {2-[[[[(4-methoxy-6-methyl-1,3,5-triazine-2-yl)amino] carbonyl] amino] sulfonyl] benzoic acid} was tested at three rates (4.5, 9, and 18 g/ha) applied at three times (same as chlorsulfuron) in field studies in 1983 and 1984. Metsulfuron did not injure subsequently planted no-till soybeans.


1996 ◽  
Vol 23 (1) ◽  
pp. 30-36 ◽  
Author(s):  
W. James Grichar ◽  
A. Edwin Colburn

Abstract Field experiments were conducted in 1991 and 1993 to evaluate flumioxazin alone and in various herbicide programs for weed control in peanut. Flumioxazin alone provided inconsistent control of annual grasses, while the addition of pendimethalin or trifluralin improved control considerably. Pitted morningglory (Ipomoea lacunosa L.) and ivyleaf morningglory [Ipomoea hederacea (L.) Jacq.] control was > 75% when flumioxazin was used alone. Flumioxazin caused early season peanut stunting with some recovery within 4 to 6 wk. Postemergence applications of imazethapyr or lactofen increased peanut stunting.


Weed Science ◽  
1988 ◽  
Vol 36 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Jeffery M. Higgins ◽  
Ted Whitwell ◽  
Fredrick T. Corbin ◽  
George E. Carter ◽  
Hoke S. Hill

Experiments were conducted to determine14C absorption, translocation, and metabolism by pitted morningglory (Ipomoea lacunosaL. # IPOLA) and ivyleaf morningglory [Ipomoea hederacea(L.) Jacq. # IPOHE] foliarly treated with14C-acifluorfen [5-(2-chloro-4-(trifluoromethyl)phenoxy)-2-nitrobenzoic acid] or14C-lactofen [(±)-2-ethoxy-1-methyl-2-oxoethyl-5-(2-chloro-4-(trifluoromethyl)phenoxy)-2-dinitrobenzoate]. Seventy-one to 84% of applied14C-acifluorfen was recovered in leaf water wash of ivyleaf morningglory compared to 32 to 46% from pitted morningglory. Sixty-four percent of applied14C-lactofen was recovered in leaf water wash 96 h after treatment in both morningglory species. Thirty-five to 37% more14C from applied14C-acifluorfen was found in pitted morningglory treated leaves than ivyleaf morningglory treated leaves. Less than 28% of applied14C-lactofen was extracted from treated leaves of either morningglory species. Translocation and metabolism of14C-acifluorfen and14C-lactofen were minimal in both morningglory species.


Weed Science ◽  
1987 ◽  
Vol 35 (6) ◽  
pp. 784-791 ◽  
Author(s):  
Peter H. Sikkema ◽  
Jack Dekker

Field experiments were conducted during 1981 and 1982 in Ontario, Canada, on the effects of quackgrass [Agropyron repens(L.) Beauv. # AGRRE] interference in soybean [Glycine max(L.) Merr.] and the usefulness of infrared thermometry in predicting critical periods of weed interference. Soybean seed yield, dry weight, number of leaves, height, and number of pods were substantially reduced due to quackgrass interference. High levels of P and K fertility did not overcome the quackgrass interference. Part of the competitive effects of quackgrass was alleviated by irrigation. Infrared thermometry successfully detected the first occurrence of quackgrass-induced stress during the early soybean flowering stage, when the quackgrass was in the four-leaf gtowth stage. This coincided with the onset of the first significant soybean yield loss. No additional soybean yield loss occurred after quackgrass reached the five-leaf growth stage. There was an inverse relation between accumulated stress degree days and soybean yield reductions due to quackgrass interference. The use of the stress degree day concept may be a valuable tool in predicting soybean yield losses due to quackgrass interference.


1990 ◽  
Vol 4 (4) ◽  
pp. 900-903 ◽  
Author(s):  
David R. Shaw ◽  
Sunil Ratnayake ◽  
Clyde A. Smith

Field experiments were conducted to evaluate the influence of application timing of imazethapyr and fluazifop-P on rhizome johnsongrass and pitted morningglory control in soybean. Herbicides were applied at three timings keyed to johnsongrass heights of 15, 30, and 60 cm and 3-, 6-, and 9-leaf pitted morningglory. Evaluations 6 wk after the final treatment indicated imazethapyr controlled both species best when applied at the 15-cm johnsongrass growth stage. Increasing imazethapyr rate did not increase control of pitted morningglory, but did increase johnsongrass control at the 15-cm application timing. However, at the 30-cm johnsongrass application timing, increasing the rate from 0.07 to 0.10 kg ha-1improved control of both species. Johnsongrass control with imazethapyr was no more than 64% when applications were delayed to 30-cm or larger johnsongrass. Fluazifop-P controlled johnsongrass well at all timings.


Sign in / Sign up

Export Citation Format

Share Document