Interaction of Terbufos and Nicosulfuron on Corn (Zea mays)

1992 ◽  
Vol 6 (4) ◽  
pp. 999-1003 ◽  
Author(s):  
George Kapusta ◽  
Ronald F. Krausz

Field studies were conducted in 1989 and 1990 to determine the potential interaction of terbufos and nicosulfuron on corn. Terbufos applied in-furrow at planting interacted with nicosulfuron applied POST to cause significant injury 25, 30, 40, 50, and 60 d after planting in 1989 and 1990. Injury decreased significantly when nicosulfuron was applied at later growth stages of corn. Plant population was not affected by terbufos and nicosulfuron regardless of the growth stage of corn at application of nicosulfuron in either year. Corn ear number and grain yield in 1989 and 1990 were lower in plots treated with terbufos at planting and nicosulfuron applied at the three leaf stage than in plots treated with only nicosulfuron. There were no differences in the height of corn, ear number, or grain yield when nicosulfuron was applied at the seven-leaf stage regardless of terbufos application in 1989 or 1990.

Weed Science ◽  
1986 ◽  
Vol 34 (2) ◽  
pp. 171-174 ◽  
Author(s):  
Jon P. Chernicky ◽  
Fred W. Slife

Field studies were conducted to measure the response of corn (Zea maysL. var. ‘Pioneer 3377’) to foliar applications of sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one}, fluazifop {(±)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy] propanoic acid}, and haloxyfop {2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy] propanoic acid} as influenced by corn growth stage and the addition of 7.7, 15,4, 77.7, 140, 280, and 840 g/ai/ha of bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. Applications of sethoxydim (16.8, 33.6, 67.2, 100, and 134 g ai/ha), fluazifop, or haloxyfop (1.0, 2.0, 4.0, 8.0, 10.0, and 13.4 g ai/ha) to four- to five-leaf corn did not reduce seed weight, but significant reductions resulted when sethoxydim (100 g/ha) or fluazifop (13.4 g/ha) was applied to 70- to 80-cm (six-leaf) corn with or without bentazon. Corn grain yield was significantly reduced by sethoxydim (>67.2 g/ha) treatment at either growth stage of corn. In contrast, corn injury induced by fluazifop (>8.0 g/ha) and haloxyfop (13.4 g/ha) resulted in reductions in yield only when applications were made to 70- to 80-cm corn. Significant reductions in seed germination also resulted from foliar applications of the graminicides, but these reductions were inconsistent across corn growth stage.


1992 ◽  
Vol 6 (3) ◽  
pp. 543-547 ◽  
Author(s):  
Ronald F. Krausz ◽  
George Kapusta

Field studies were conducted in 1989 and 1990 to determine if corn seed treated with naphthalic anhydride (NA) at 0.5% (w/w) would result in a reduction in corn injury caused by clomazone applied preplant incorporated (PPI) or preemergence (PRE) at 0.56 and 0.70 kg a.i. ha–1. NA significantly reduced corn injury, especially where clomazone was incorporated. Plant population, height, ear number, and grain yield also were higher in plots where NA was used. In most instances, corn injury was less and plant population, height, ear number, and grain yield were higher in plots where clomazone was applied PRE compared with PPI.


Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 793-799 ◽  
Author(s):  
Jeanne S. Falk ◽  
Douglas E. Shoup ◽  
Kassim Al-Khatib ◽  
Dallas E. Peterson

Greenhouse and field studies were conducted with a population of common waterhemp resistant to POST protoporphyrinogen oxidase (protox)-inhibiting herbicides to compare its response to PRE and POST applications of selected herbicides. In the greenhouse, a dose–response study of PRE applications of acifluorfen, fomesafen, or lactofen was conducted on protox-susceptible and -resistant common waterhemp. The protox-resistant biotype was approximately 6.3, 2.5, and 2.6 times more resistant than the susceptible biotype to acifluorfen, fomesafen, and lactofen, respectively. In a separate study under field conditions, protox-resistant common waterhemp were treated with PRE and POST applications of acifluorfen, azafenidin, flumioxazin, fomesafen, lactofen, oxyfluorfen, or sulfentrazone. At 14 and 28 d after POST treatment (DAPT) in 2002 and 2004, all PRE applications of herbicides gave greater control than did POST applications. At 14 DAPT, oxyfluorfen had the greatest difference in PRE and POST control, with 85 and 10% control in 2002, respectively. An additional field study was conducted to determine the stage of growth at which resistance to protox-inhibiting herbicides becomes most prevalent. Protox-resistant common waterhemp were treated with herbicides at the 2-leaf, 4- to 6-leaf, and 8- to 10-leaf growth stage. Acifluorfen and fomesafen at 420 g ha−1gave greater than 90% control at the 2-leaf stage and 4- to 6-leaf stage, except in 2003 when control was 85% with acifluorfen. In 2003 and 2004, common waterhemp control at the 8- to 10-leaf stage ranged between 54 and 75% with acifluorfen or fomesafen. Results indicate that common waterhemp resistance to customary rates of POST protox-inhibiting herbicides becomes prevalent after the 4- to 6-leaf growth stage.


2017 ◽  
Vol 15 (1) ◽  
pp. e1001
Author(s):  
Rubia Rasool ◽  
Makhan S. Bhullar ◽  
Gurjeet S. Gill

Phalaris minor Retz. has evolved multiple herbicide resistance in wheat growing areas in northwestern India. An understanding of the effect of growth stage on herbicide tolerance of wheat and control of P. minor will help in selecting the most appropriate herbicide for different situations. The weed control and crop safety of four commonly used wheat herbicides (sulfosulfuron, pinoxaden, fenoxaprop plus metribuzin and mesosulfuron plus iodosulfuron), each applied at four different wheat growth stages was investigated in field studies for two years. P. minor plants were at 1, 2-3, 3-4 and 7-8 leaf stages when the herbicides were applied at Zadok 12-Z12, Z13, Z21 and Z23 stages of wheat, respectively. Sulfosulfuron application at Z12 and Z13 wheat stages (before first irrigation), provided >80% control of P. minor and produced wheat grain yield (4.5-4.7 t/ha) similar to the weed-free check (4.9 t/ha) in both years. Pinoxaden, fenoxaprop plus metribuzin and mesosulfuron plus iodosulfuron application at Z12 and Z13 wheat stages recorded significantly lower wheat grain yield (3.62-3.95 t/ha) due to poor weed control, crop toxicity or both. All the four herbicides were equally effective on P. minor when applied at Z21 wheat stage. At Z23 wheat stage, pinoxaden gave >90% control of P. minor and the highest wheat grain yield (4.82 t/ha). The results are expected to allow changes in the current recommendation of the timing of post-emergence herbicides for the management of P. minor in wheat.


2011 ◽  
Vol 25 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Jason A. Bond ◽  
Timothy W. Walker

Field studies were conducted to compare the response of one inbred (‘CL161’) and two hybrid (‘CLXL729’ and ‘CLXL745’) Clearfield (CL) rice cultivars to imazamox. Imazamox was applied at 44 and 88 g ai ha−1to rice in the panicle initiation (PI) and PI plus 14 d (PI + 14) growth stages and at 44 g ha−1to rice in the midboot growth stage. Maturity of hybrid CL cultivars was delayed following imazamox at 44 g ha−1applied at PI + 14 and midboot. Furthermore, imazamox at 44 g ha−1, applied at midboot, delayed maturity of CLXL745 more than CLXL729. Expressed as a percentage of the weed-free control plots, rough rice yields for CLXL729 were 91% following imazamox at 44 g ha−1applied at PI + 14, 78% following imazamox at 44 g ha−1applied at midboot, and 77% for imazamox at 88 g ha−1applied at PI + 14. Rough rice yield for CLXL745 was 77 to 92% of the control following all imazamox treatments. All imazamox treatments reduced CLXL745 rough rice yield compared with CL161. Rough rice yield, pooled across CL cultivar, varied with imazamox treatment between years, and these differences may have been a consequence of lower temperatures and solar radiation in the first year. Hybrid CL cultivars CLXL729 and CLXL745 were less tolerant than was CL161 when imazamox was applied at nonlabeled rates (88 g ha−1) and/or timings (PI + 14 or midboot). Because of variability in rice growth stages and irregularities in imazamox application in commercial fields, inbred CL cultivars should be planted where an imazamox application will likely be required.


1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


1991 ◽  
Vol 5 (2) ◽  
pp. 439-441
Author(s):  
Randy L. Anderson ◽  
David C. Nielsen

Paraquat was applied at 0.28 and 0.56 kg ai ha-1to winter wheat at five growth stages at 0800, 1300, and 1600 hr to determine whether growth stage or time of application influenced winter wheat response to paraquat. Paraquat bioactivity was affected by growth stage. Biomass reduction by paraquat was 84% when winter wheat was in the 1 to 3 leaf stage, but only 68% when application was delayed until tillering. Paraquat bioactivity continued to decrease at later growth stages. The time of day when paraquat was applied did not affect its bioactivity on winter wheat.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 568-573 ◽  
Author(s):  
Stevan Z. Knezevic ◽  
Stephan F. Weise ◽  
Clarence J. Swanton

Redroot pigweed is a major weed in corn throughout Ontario. Field experiments were conducted at two locations in 1991 and 1992 to determine the influence of selected densities and emergence times of redroot pigweed on corn growth and grain yield. Redroot pigweed densities of 0.5, 1, 2, 4 and 8 plants per m of row were established within 12.5 cm on either side of the corn row. In both years, redroot pigweed seeds were planted concurrently and with corn at the 3- to 5-leaf stage of corn growth. A density of 0.5 redroot pigweed per m of row from the first (earlier) emergence date of pigweed (in most cases, up to the 4-leaf stage of corn) or four redroot pigweed per m of row from the second (later) emergence date of pigweed (in most cases, between the 4- and 7-leaf stage of corn) reduced corn yield by 5%. Redroot pigweed emerging after the 7-leaf stage of corn growth did not reduce yield. Redroot pigweed seed production was dependent upon its density and time of emergence. The time of redroot pigweed emergence, relative to corn, may be more important than its density in assessing the need for postemergence control.


Weed Science ◽  
1992 ◽  
Vol 40 (3) ◽  
pp. 441-447 ◽  
Author(s):  
Michael R. Hall ◽  
Clarence J. Swanton ◽  
Glenn W. Anderson

Field studies were conducted in southern Ontario to determine the critical period of weed control in grain corn and the influence of weed interference on corn leaf area. The Gompertz and logistic equations were fitted to data representing increasing durations of weed control and weed interference, respectively. The beginning of the critical period varied from the 3- to 14-leaf stages of corn development However, the end of the critical period was less variable and ended on average at the 14-leaf stage. Weed interference reduced corn leaf area by reducing the expanded leaf area of each individual leaf and accelerating senescence of lower leaves. In addition, weed interference up to the 14-leaf stage of corn development impeded leaf expansion and emergence in 1989.


Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 339-344 ◽  
Author(s):  
Darren K. Robinson ◽  
David W. Monks ◽  
James D. Burton

LAB 145 138 (LAB) was evaluated as a safener to improve sweet corn tolerance to nicosulfuron applied POST alone or with terbufos applied in the planting furrow or bentazon applied POST. To ensure enhanced injury for experimental purposes, nicosulfuron was applied at twice the registered rate alone or mixed with bentazon at the six- to seven-leaf growth stage of corn previously treated with the highest labeled rate of terbufos 15 G formulation. LAB applied as a seed treatment (ST) or POST at the two- to three-, four- to five-, or six- to seven-leaf growth stages reduced height reduction and yield loss from nicosulfuron applied POST in combination with terbufos applied in-furrow. LAB applied POST at the four- to five-leaf growth stage was most effective in preventing injury from this treatment, with yield reduced only 8% compared with 54% from the nicosulfuron and terbufos treatment. LAB applied POST at the eight- to nine-leaf growth stage did not alleviate injury. With the nicosulfuron, terbufos, and bentazon combination, LAB applied POST at the three- to four- or six- to seven-leaf growth stages decreased height reduction and yield loss caused by this combination, with LAB at the three- to four-leaf growth stage being most effective.


Sign in / Sign up

Export Citation Format

Share Document