Intelligent automated grid generation for numerical simulations

Author(s):  
Ke-Thia Yao ◽  
Andrew Gelsey

AbstractNumerical simulation of partial differential equations (PDEs) plays a crucial role in predicting the behavior-of physical systems and in modern engineering design. However, to produce reliable results with a PDE simulator, a human expert must typically expend considerable time and effort in setting up the simulation. Most of this effort is spent in generating the grid, the discretization of the spatial domain that the PDE simulator requires as input. To properly design a grid, the gridder must not only consider the characteristics of the spatial domain, but also the physics of the situation and the peculiarities of the numerical simulator. This article describes an intelligent gridder that is capable of analyzing the topology of the spatial domain and of predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically, gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains with a wide range of configurations.

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 79
Author(s):  
Minghan Luo ◽  
Wenjie Xu ◽  
Xiaorong Kang ◽  
Keqiang Ding ◽  
Taeseop Jeong

The ultraviolet photochemical degradation process is widely recognized as a low-cost, environmentally friendly, and sustainable technology for water treatment. This study integrated computational fluid dynamics (CFD) and a photoreactive kinetic model to investigate the effects of flow characteristics on the contaminant degradation performance of a rotating annular photoreactor with a vacuum-UV (VUV)/UV process performed in continuous flow mode. The results demonstrated that the introduced fluid remained in intensive rotational movement inside the reactor for a wide range of inflow rates, and the rotational movement was enhanced with increasing influent speed within the studied velocity range. The CFD modeling results were consistent with the experimental abatement of methylene blue (MB), although the model slightly overestimated MB degradation because it did not fully account for the consumption of OH radicals from byproducts generated in the MB decomposition processes. The OH radical generation and contaminant degradation efficiency of the VUV/UV process showed strong correlation with the mixing level in a photoreactor, which confirmed the promising potential of the developed rotating annular VUV reactor in water treatment.


Author(s):  
Mayank Rakesh ◽  
Paritosh Kumar Rakesh ◽  
Brajesh Kumar ◽  
Satajit Chowdhury ◽  
Atul Kumar Patidar

1970 ◽  
Vol 7 ◽  
pp. 60-64 ◽  
Author(s):  
Ruchi Khare ◽  
Vishnu Prasad Prasad ◽  
Sushil Kumar

The testing of physical turbine models is costly, time consuming and subject to limitations of laboratory setup to meet International Electro technical Commission (IEC) standards. Computational fluid dynamics (CFD) has emerged as a powerful tool for funding numerical solutions of wide range of flow equations whose analytical solutions are not feasible. CFD also minimizes the requirement of model testing. The present work deals with simulation of 3D flow in mixed flow (Francis) turbine passage; i.e., stay vane, guide vane, runner and draft tube using ANSYS CFX 10 software for study of flow pattern within turbine space and computation of various losses and efficiency at different operating regimes. The computed values and variation of performance parameters are found to bear close comparison with experimental results.Key words: Hydraulic turbine; Performance; Computational fluid dynamics; Efficiency; LossesDOI: 10.3126/hn.v7i0.4239Hydro Nepal Journal of Water, Energy and EnvironmentVol. 7, July, 2010Page: 60-64Uploaded date: 31 January, 2011


Author(s):  
Andrea G. Sanvito ◽  
Giacomo Persico ◽  
M. Sergio Campobasso

Abstract This study provides a novel contribution toward the establishment of a new high-fidelity simulation-based design methodology for stall-regulated horizontal axis wind turbines. The aerodynamic design of these machines is complex, due to the difficulty of reliably predicting stall onset and poststall characteristics. Low-fidelity design methods, widely used in industry, are computationally efficient, but are often affected by significant uncertainty. Conversely, Navier–Stokes computational fluid dynamics (CFD) can reduce such uncertainty, resulting in lower development costs by reducing the need of field testing of designs not fit for purpose. Here, the compressible CFD research code COSA is used to assess the performance of two alternative designs of a 13-m stall-regulated rotor over a wide range of operating conditions. Validation of the numerical methodology is based on thorough comparisons of novel simulations and measured data of the National Renewable Energy Laboratory (NREL) phase VI turbine rotor, and one of the two industrial rotor designs. An excellent agreement is found in all cases. All simulations of the two industrial rotors are time-dependent, to capture the unsteadiness associated with stall which occurs at most wind speeds. The two designs are cross-compared, with emphasis on the different stall patterns resulting from particular design choices. The key novelty of this work is the CFD-based assessment of the correlation among turbine power, blade aerodynamics, and blade design variables (airfoil geometry, blade planform, and twist) over most operational wind speeds.


2012 ◽  
Vol 3 ◽  
pp. 366-374
Author(s):  
Jarosław Wasilewski ◽  
Kryspin Mirota ◽  
Sylwia Peryt-Stawiarska ◽  
Andrzej Nowakowski ◽  
Lech Poloński ◽  
...  

2004 ◽  
Vol 126 (2) ◽  
pp. 180-187 ◽  
Author(s):  
Xinwei Song ◽  
Houston G. Wood ◽  
Don Olsen

The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.


Author(s):  
Rajnish K. Calay ◽  
Arne E. Holdo

The Computational Fluid Dynamics (CFD) is now increasingly being used for modeling industrial flows, i.e. flows which are multiphase and turbulent. Numerical modeling of flows where momentum, heat and mass transfer occurs at the interface presents various difficulties due to the wide range of mechanisms and flow scenarios present. This paper attempts to provide a summary of available mathematical models and techniques for two-phase flows. Some comments are also made on the models available in the commercially available codes.


Sign in / Sign up

Export Citation Format

Share Document