scholarly journals Articulating (mis)understanding across design discipline interfaces at a design team meeting

Author(s):  
Rachael Luck

AbstractCommunication is both the problem and the solution to misunderstanding. It is the human communicative ability to display understanding to resolve misunderstandings that plays an important part in the organization of the design inputs to a construction project. Ambiguity and uncertainty, as different forms of misunderstanding, are studied in this article, as they are manifest in the conversation at a design meeting. In this setting the coordination of bothin situdesign activities and the planning of design tasks takes place in real time, in conversation. Exhibited are several ways that design ambiguities and uncertainties can be seen in the interactional details of a multidisciplinary design team's conversation, to then report on how different design expertise featured in the raising of, and attempts at resolving, the misunderstandings that arose. In the course of this meeting, ambiguity and uncertainty were observed not as neat, discrete phenomena but were interwoven in the conversation. This characteristic poses difficulties in the disambiguation of the problem-solving response to each form of misunderstanding and further develops our understanding of design as it is communicated and conducted in social interaction. Finally, some implications from this study are put forward to inform the design of support for collaborative design.

Author(s):  
Michael D. McNeese ◽  
Brian S. Zaff ◽  
Clifford E. Brown ◽  
Maryalice Citera ◽  
Jonathan Selvaraj

The need to understand the design process in all its complexity is motivated by an interest in the development of tools and technologies that would be capable of aiding collaborative design teams. This development effort depends upon an understanding of design activities as they occur within a real world context. Observations of design activities that are made without direct communication with the design team members may fail to capture many of the subtler aspects of the process - aspects that are best understood when described by the design team members themselves. In order to supplement observational studies, this paper presents a case study in which a dialog with members of a variety of collaborative design teams was established in order to elicit information about the nature of collaborative design. A knowledge acquisition technique, concept mapping, was used to achieve an understanding of the role of human factors specialists within the collaborative design process specific to the Air Force's system acquisition program. Results highlight various findings about the nature of design problem solving such as the way different organizational settings influence human factors input in the design process/product. The paper discusses the usefulness of concept mapping to capture in-depth design knowledge and how this type of knowledge complements other approaches to understanding design.


2020 ◽  
Vol 37 (5) ◽  
pp. 267-277
Author(s):  
Maarten de Laat ◽  
Srecko Joksimovic ◽  
Dirk Ifenthaler

PurposeTo help workers make the right decision, over the years, technological solutions and workplace learning analytics systems have been designed to aid this process (Ruiz-Calleja et al., 2019). Recent developments in artificial intelligence (AI) have the potential to further revolutionise the integration of human and artificial learning and will impact human and machine collaboration during team work (Seeber et al., 2020).Design/methodology/approachComplex problem-solving has been identified as one of the key skills for the future workforce (Hager and Beckett, 2019). Problems faced by today's workforce emerge in situ and everyday workplace learning is seen as an effective way to develop the skills and experience workers need to embrace these problems (Campbell, 2005; Jonassen et al., 2006).FindingsIn this commentary the authors argue that the increased digitization of work and social interaction, combined with recent research on workplace learning analytics and AI opens up the possibility for designing automated real-time feedback systems capable of just-in-time, just-in-place support during complex problem-solving at work. As such, these systems can support augmented learning and professional development in situ.Originality/valueThe commentary reflects on the benefits of automated real-time feedback systems and argues for the need of shared research agenda to cohere research in the direction of AI-enabled workplace analytics and real-time feedback to support learning and development in the workplace.


2021 ◽  
pp. 1-46
Author(s):  
Joshua Gyory ◽  
Kenneth Kotovsky ◽  
Jonathan Cagan

Abstract Computationally studying team discourse can provide valuable, real-time insights into the state of design teams and design cognition during problem-solving. The particular experimental design, adopted from previous work by the authors, places one of the design team conditions under the guidance of a human process manager. In that work, teams under this process management outperformed the unmanaged teams in terms of their design performance. This opens the opportunity to not only model design discourse during problem solving, but more critically, to explore process manager interventions and their impact on design cognition. Utilizing this experimental framework, a topic model is trained on the discourse of human designers of both managed and unmanaged teams collaboratively solving a conceptual engineering design task. Results show that the two team conditions significantly differ in a number of the extracted topics, and in particular, those topics that most pertain to the manager interventions. A dynamic look during the design process reveals that the largest differences between the managed and unmanaged teams occur during the latter half of problem-solving. Furthermore, a before and after analysis of the topic-motivated interventions reveals that the process manager interventions significantly shift the topic mixture of the team members’ discourse immediately after intervening. Taken together, these results from this work not only corroborate the effect of the process manager interventions on design team discourse and cognition but provide promise for the computational detection and facilitation of design interventions based on real-time, discourse data.


Author(s):  
Vladimir Tarasov ◽  
Kurt Sandkuhl ◽  
Magnus Lundqvist

Collaborative design in dispersed groups of engineers creates various kinds of challenges to technology, organization and social environment. This paper presents an approach to description and representation of the competences needed for a planned collaborative design project. The most important competence areas are identified starting from the nature of design work, problem solving in design teams, and working in distributed groups. The competence model is built structuring these areas according to three perspectives: general, cultural, and occupational competences. An ontological representation is proposed to implement the described model for collaborative design competence. Using an ontology language for representation of collaborative design competence models makes it possible to identify those individuals who are best suited for the collaboration by ontology matching. Furthermore, a software design team consisting of two persons was interviewed and competence profiles were created using the developed ontological representation. Modeling of the team members has confirmed that the proposed approach can be applied to modeling competences needed for collaborative design in engineering fields.


Author(s):  
Camilo POTOCNJAK-OXMAN

Stir was a crowd-voted grants platform aimed at supporting creative youth in the early stages of an entrepreneurial journey. Developed through an in-depth, collaborative design process, between 2015 and 2018 it received close to two hundred projects and distributed over fifty grants to emerging creatives and became one of the most impactful programs aimed at increasing entrepreneurial activity in Canberra, Australia. The following case study will provide an overview of the methodology and process used by the design team in conceiving and developing this platform, highlighting how the community’s interests and competencies were embedded in the project itself. The case provides insights for people leading collaborative design processes, with specific emphasis on some of the characteristics on programs targeting creative youth


2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


2017 ◽  
Vol 2017 (4) ◽  
pp. 5598-5617
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Qiuchen Dong ◽  
Yan Li ◽  
Dingyi Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document