Reality brings excitement to engineering education

Author(s):  
LARRY LEIFER ◽  
SHERI SHEPPARD

The intellectual content and social activity of engineering product development are a constant source of surprise, excitement, and challenge for engineers. When our students experience product-based-learning (PBL), they experience this excitement (Brereton et al., 1995). They also have fun and perform beyond the limits required for simple grades. We, their teachers, experience these things too. Why, then, are so few students and faculty getting the PBL message? How, then, can we put the excitement back in engineering education? In part, we think this is because of three persistent mistakes in engineering education:1. We focus on individual students.2. We focus on engineering analysis versus communication between engineers.3. We fail to integrate thinking skills in engineering science and engineering practice.

Author(s):  
Alice M. Agogino

How will engineering practice change in the next twenty years? What are the implications to engineering education? Will we have achieved gender equity? These questions will be discussed in the context of three recent reports of the US. National Academy of Engineering – The Engineer of 2020: Global Visions of Engineering in the New Century; Educating the Engineer of 2020: Adapting Engineering Education to the New Century; and Beyond Bias and Barriers: Fulfilling the Potential of Women in Academic Science and Engineering.


1997 ◽  
Vol 3 (1) ◽  
pp. 233-239 ◽  
Author(s):  
Patrick Holmes

The international dimension of science and engineering education is of paramount importance and merits serious consideration of the coherent skill set that is required to allow scientists and engineers more readily to transport themselves and their work to other locations in the world. 


Author(s):  
Roger G. Harrison ◽  
Paul W. Todd ◽  
Scott R. Rudge ◽  
Demetri P. Petrides

Designed for undergraduates, graduate students, and industry practitioners, Bioseparations Science and Engineering fills a critical need in the field of bioseparations. Current, comprehensive, and concise, it covers bioseparations unit operations in unprecedented depth. In each of the chapters, the authors use a consistent method of explaining unit operations, starting with a qualitative description noting the significance and general application of the unit operation. They then illustrate the scientific application of the operation, develop the required mathematical theory, and finally, describe the applications of the theory in engineering practice, with an emphasis on design and scaleup. Unique to this text is a chapter dedicated to bioseparations process design and economics, in which a process simular, SuperPro Designer® is used to analyze and evaluate the production of three important biological products. New to this second edition are updated discussions of moment analysis, computer simulation, membrane chromatography, and evaporation, among others, as well as revised problem sets. Unique features include basic information about bioproducts and engineering analysis and a chapter with bioseparations laboratory exercises. Bioseparations Science and Engineering is ideal for students and professionals working in or studying bioseparations, and is the premier text in the field.


Author(s):  
Yeon Kim ◽  
Suk Lee ◽  
Changsun Ahn

Project-based learning is one of the popular and promising approaches in engineering education. The current study reports on a curriculum that was designed and implemented by a graduate school to help students gain knowledge and creative thinking skills through collaboration between different majors during industrial projects in a graduate course on home appliance engineering. The students selected the topics, planned the project, conducted research, produced a prototype, and presented their results under the guidance of a group of advisors consisting of professors, technical advisors, and industry mentors. A quantitative analysis showed that this approach was effective in improving the students’ attitude toward engineering. Furthermore, a qualitative analysis showed that this learning method helped students learn how to communicate and present effectively, to flexibly approach projects, and to understand the practices of industrial research. Based on the findings, the current study discusses how the project-based learning helped students advance.


Author(s):  
Ian Yellowley ◽  
Peihua Gu

The authors examine the changes and opportunities in the educational environment that will occur as packaged courseware and virtual access to laboratories are assimilated into the engineering curriculum worldwide. The impact on Universities and in turn on Canadian industry will be major unless there is a coordinated effort that can turn the challenge into an opportunity. The opportunity, the authors believe, is to use this new material to allow innovative approaches to education that use Design to direct student learning. The major benefits would be a greater appreciation of technology and practice and significantly improved communication skills, (both of which are regarded as essential by industrial employers). The authors believe that the engineering science background would be enhanced rather than weakened by the approach suggested.


2016 ◽  
Vol 6 (2) ◽  
pp. 59 ◽  
Author(s):  
Aharon Gero

The course “Interdisciplinary Aspects in Science and Engineering Education” is a unique course designed to expose students of science and engineering education to the characteristics of interdisciplinary teaching and learning. The theoretical part of the course deals with the nature of science and engineering and the interaction between the two, various hierarchies describing the level of integration between disciplines, and possible strategies for developing interdisciplinary lessons. In the practical section, the participants develop, in heterogeneous teams of students from different academic backgrounds, an interdisciplinary lesson integrating science and engineering, and teach it to their peers. Using qualitative tools, the research described in this paper characterized the attitudes of 112 students towards developing an interdisciplinary lesson as part of a team. The findings indicate that the students identified both the difficulties involved in developing an interdisciplinary lesson as part of a team and the advantages inherent to teamwork. It was further found that the weight of the attitude component that recognized the contribution of teamwork to the development of interdisciplinary lessons was considerably higher than the weight of the component indicating the difficulties that involved teamwork.


Author(s):  
Aleksander Czekanski ◽  
Maher Al-Dojayli ◽  
Tom Lee

Engineering practice and design in particular have gone through several changes during the last two decades whether due to scientific achievements including the evolution in novel engineering materials, computational advancements, globalization and economic constraints as well as the strategic needs which are the drive for innovative engineering. All these factors have impacted and shaped to certain extent the educational system in North America and Canada in particular. Currently, high percentage of the engineering graduates would require extensive training in industry to be able to conduct reliable complex engineering designs supported by scientific verification and validation, understand the complete design stages and phases, and identify the economic and cultural impact on such designs. This task, however, faces great challenges without educational support in such vastly changing economy.Lots of attention has been devoted to engineering design education in the recent years to incorporate engineering design courses supported by team design projects and capstone projects. Nevertheless, the lack of integrated education system towards engineering design programs can undermine the benefits of such efforts. In this paper, observations and analysis of the challenges in engineering design are presented from both academic and industrial points of view. Furthermore, a proposed vertical and lateral engineering education program is discussed. This program is structured to cover every year of the engineering education curricula, which emphasizes on innovative thinking, design strategies, support from and integration with other technical engineering courses, the use of advanced analysis tools, team collaboration, management and leadership, multidisciplinary education and industrial involvement. Its courses have just commenced for freshmen engineering students at the newly launched Mechanical Engineering Department at the Lassonde School of Engineering, York University.


Sign in / Sign up

Export Citation Format

Share Document