scholarly journals Comparative Economics of Alternative Agricultural Production Systems: A Review

1991 ◽  
Vol 20 (1) ◽  
pp. 124-142 ◽  
Author(s):  
Glenn Fox ◽  
Alfons Weersink ◽  
Ghulam Sarwar ◽  
Scott Duff ◽  
Bill Deen

The agricultural policy agenda in the United States, Canada, and in Western Europe has been increasingly influenced by concerns for the sustainability of agricultural production systems. National, state, and provincial governments in North America are becoming increasingly sensitive to the environmental and human-health risks associated with current modes of agricultural production and policy actions, including restrictions on the use of certain agricultural chemicals and inducements to encourage the use of alternative production practices. Many restrictions and inducements have been undertaken or are currently under consideration in many jurisdictions.

2016 ◽  
Vol 49 ◽  
pp. 1-15 ◽  
Author(s):  
Hubert Wiggering ◽  
Peter Weißhuhn ◽  
Benjamin Burkhard

To discriminate between the contributions of ecosystems and the human subsidies to agricultural systems, we propose using an additional terminology to bring clarification into the controversial discussion about i) ecosystems versus agrosystems and ii) ecosystem services versus agrosystem services. A literature review revealed that with the exception of some very recent publications, this has not yet been sufficiently reflected, neither within the scientific nor in the policy discussion. The question remains whether to spoil the discussion with new terms again and again. We reason that it makes sense to underpin the case-specific share of agricultural inputs to the supply of agroecosystem services and to add "agro" to the terminology. We conclude, that there is a need to promote the new terminology of agrosystem services and to strengthen the use of the already established term agroecosystem services within this context. To emphasise the production patterns behind the multiple benefits agricultural systems provide to humans (commodity and non-commodity outputs) and to guarantee a reasonable weighting of related externalities in policy processes, we suggest to introduce the term agrosystem services into the discussion on ecosystem services. Agrosystem services in this context describe the anthropogenic share of agroecosystem services' generation. Agroecosystem services include multiple provisioning, regulating and cultural services from agricultural ecosystems. The inclusion of agrosystem services might accommodate the ecology-based ecosystem services concept to the specificity of managed agricultural ecosystems and therefore could be better implemented by mostly economy-driven agricultural production systems and agricultural policy.


HortScience ◽  
2017 ◽  
Vol 52 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Carol Miles ◽  
Lisa DeVetter ◽  
Shuresh Ghimire ◽  
Douglas G. Hayes

Biodegradable plastic mulch has the potential to be a sustainable technology in agricultural production systems if the mulch performs equally to polyethylene (PE) mulch and biodegrades completely into constituents that do not harm the soil ecology or environment. Reduced labor costs for removal and disposal, and reduced landfill waste add further appeal to the sustainability of biodegradable plastic mulch. Biodegradable paper mulch has been allowed in certified organic production systems in the United States for many years, while the National Organic Program (NOP) added biodegradable biobased plastic mulch to the list of allowed synthetic substances for organic crop production in Oct. 2014. Although biodegradable plastic mulch may meet the NOP biodegradability requirements (90% biodegradation within 2 years), currently no products have been approved for use in certified organic production because, so far, none meet the requirement of being completely biobased. Additionally, while the synthetic manufacturing processes that are used to make biodegradable plastic mulch are allowed by the NOP, the use of genetically modified organisms (GMOs) in the feedstocks, including their fermentation, is not allowed. Organic growers are advised always to check with their certifier before applying a product as some biodegradable mulch manufacturers and marketers erroneously advertise their product as “organic.” Looking forward, if biodegradable plastic mulch meets the NOP requirement of 90% biodegradation after 2 years, there is a possibility that 10% of plastic mulch residuals will persist (if the mulch contains nonbiodegradable ingredients); in this case, after 8 years of annual biodegradable mulch application, plastic residuals in the soil would exceed twice the amount of mulch applied per year. The current methods used by the NOP to test mulch biodegradation are laboratory based and it is uncertain if the results accurately represent field conditions. Reliable field sampling methods to measure residual mulch fragments in the soil need to be developed; however, it is unlikely such field tests will measure CO2 evolution, and thus will not be a true measure of biodegradation. Additional testing is needed under diverse field conditions to accurately quantify the rate and extent of biodegradation of mulch products that are marketed as biodegradable.


2018 ◽  
Vol 2 (95) ◽  
pp. 69-72
Author(s):  
Yu.A. Tarariko ◽  
L.V. Datsko ◽  
M.O. Datsko

The aim of the work is to assess the existing and prospective models for the development of agricultural production in Central Polesie on the basis of economic feasibility and ecological balance. The evaluation of promising agricultural production systems was carried out with the help of simulation modeling of various infrastructure options at the levels of crop and multisectoral specialization of agroecosystems. The agro-resource potential of Central Polesie is better implemented in the rotation with lupine, corn and flax dolguntsem with well-developed infrastructure, including crop, livestock units, grain processing and storage systems, feed, finished products and waste processing in the bioenergetic station. The expected income for the formation of such an infrastructure is almost 8 thousand dollars. / with a payback period of capital investments of 2-3 years.


2014 ◽  
Vol 126 ◽  
pp. 1-2 ◽  
Author(s):  
S. Dogliotti ◽  
D. Rodríguez ◽  
S. López-Ridaura ◽  
P. Tittonell ◽  
W.A.H. Rossing

Sign in / Sign up

Export Citation Format

Share Document