Bangladesh anthrax outbreaks are probably caused by contaminated livestock feed

2012 ◽  
Vol 141 (5) ◽  
pp. 1021-1028 ◽  
Author(s):  
A. FASANELLA ◽  
G. GAROFOLO ◽  
M. J. HOSSAIN ◽  
M. SHAMSUDDIN ◽  
J. K. BLACKBURN ◽  
...  

SUMMARYIn Bangladesh from 1 July to 30 September 2010 there were 104 animal cases of anthrax and 607 associated human cases. This investigation was conducted in Sirajganj district in December 2010, on eight farms where animal cases had occurred.Bacillus anthraciswas recovered from soil samples and turbinate bones on six farms. Canonical single nucleotide polymorphism (SNP) analysis showed that all the isolates belonged to the major lineage A, sublineage A.Br.001/002 of China and South East Asia while a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) with 15 VNTRs demonstrated three unique genotypes. The single nucleotide repeat (SNR) analyses showed two SNR types in 97 out of 99 isolates; nevertheless, due to its higher discriminatory power the presence of two isolates with different SNR-type polymorphisms were detected within two MLVA genotypes. The epidemic occurred during the monsoon season, a time of extensive flooding, suggesting that the source was contaminated feed, not grazing, which is supported by the genetic variance.

Author(s):  
Janisara Rudeeaneksin ◽  
Benjawan Phetsuksiri ◽  
Chie Nakajima ◽  
Supranee Bunchoo ◽  
Krairerk Suthum ◽  
...  

Abstract Background Multidrug-resistant TB (MDR-TB) outbreaks have occurred in the Thamaka district, Kanchanaburi province in Thailand. Methods Seventy-two isolates, which included 7% mono-, 30.6% MDR and extensively drug-resistant TB (XDR-TB), were genotyped by spoligotyping, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) and single nucleotide polymorphism genotyping, and their drug resistance was analysed. Results The spoligotyping results showed that Beijing spoligo-international type (SIT)1 was predominant (n=38; 52.8%) while the remaining were non-Beijing sublineages (n=34). The MIRU-VNTR analysis showed that Beijing isolates, most of which belonged to the modern type (n=37), formed 5 clusters and 13 individual patterns. In katG, only mutation Ser315Thr was identified. In rpoB, Ser531Leu was predominant, except for His526Arg and Leu533Pro, which were found in two isolates. A cluster of 14 Beijing strains contained these common mutations and shared the MIRU-VNTR genotype with isolates in the Thamaka district that had spread previously. Two U SIT523 isolates contained the mutations A1400G in rrs and Asp94Gly in gyrA genes, indicating a spread of XDR-TB. Conclusions Most mutations were associated with drug resistance and the specific MDR Beijing and XDR-TB in U SIT523 isolates remain. This genotyping is a key tool for tracking TB transmission in the Thamaka district of Thailand.


2019 ◽  
Vol 24 (34) ◽  
Author(s):  
Robert Söderlund ◽  
Cecilia Jernberg ◽  
Linda Trönnberg ◽  
Anna Pääjärvi ◽  
Erik Ågren ◽  
...  

In 2016, an outbreak of Salmonella Typhimurium (STm) with multilocus variable-number tandem repeat analysis (MLVA) profiles historically associated with passerine birds (2-[11-15]-[3-4]-NA-212) occurred among passerines, cats and humans in Sweden. Our retrospective observational study investigated the outbreak and revisited historical data from 2009–16 to identify seasonality, phylogeography and other characteristics of this STm variant. Outbreak isolates were analysed by whole-genome single nucleotide polymorphism (SNP) typing. The number of notified cases of passerine-associated STm among passerines, cats and humans per month and county, and their MLVA profiles, were compared to birdwatchers’ counts of passerines. Seasonal trend decomposition and correlation analysis was performed. Outbreak isolates did not cluster by host on SNP level. Passerine-associated STm was seasonal for birds, cats and humans, with a peak in March. Cases and counts of passerines at bird feeders varied between years. The incidence of passerine-associated STm infections in humans was higher in the boreal north compared with the southern and capital regions, consistent with passerine population densities. Seasonal mass migration of passerines appears to cause STm outbreaks among cats certain years in Sweden, most likely via predation on weakened birds. Outbreaks among humans can follow, presumably caused by contact with cats or environmental contamination.


2013 ◽  
Vol 18 (13) ◽  
Author(s):  
R Grunow ◽  
S R Klee ◽  
W Beyer ◽  
M George ◽  
D Grunow ◽  
...  

Injection anthrax was described first in 2000 in a heroin-injecting drug user in Norway. New anthrax cases among heroin consumers were detected in the United Kingdom (52 cases) and Germany (3 cases) in 2009-10. In June 2012, a fatal case occurred in Regensburg, Bavaria. As of December 2012, 13 cases had been reported in this new outbreak from Germany, Denmark, France and the United Kingdom. We analysed isolates from 2009-10 and 2012 as well as from the first injection anthrax case in Norway in 2000 by comparative molecular typing using a high resolution 31 marker multilocus variable-number tandem repeat analysis (MLVA) and a broad single nucleotide polymorphism (SNP) analysis. Our results show that all cases may be traced back to the same outbreak strain. They also indicate the probability of a single source contaminating heroin and that the outbreak could have lasted for at least a decade. However, an additional serological pilot study in two German regions conducted in 2011 failed to discover additional anthrax cases among 288 heroin users.


2020 ◽  
Vol 9 (50) ◽  
Author(s):  
Alexandr Shevtsov ◽  
Gilles Vergnaud ◽  
Asylulan Amirgazin ◽  
Larissa Lukhnova ◽  
Uinkul Izbanova ◽  
...  

ABSTRACT We present a retrospective analysis of strains from two anthrax outbreaks in western Kazakhstan in 2009. The outbreaks occurred during the same period and in the same area located close to main roads, favoring a single source of infection. However, multilocus variable-number tandem-repeat analysis (MLVA), canonical single-nucleotide polymorphism (CanSNP) analysis, and genome-wide analysis demonstrated that the outbreaks were not connected.


2019 ◽  
Vol 147 ◽  
Author(s):  
H. Strydom ◽  
J. Wang ◽  
S. Paine ◽  
K. Dyet ◽  
K. Cullen ◽  
...  

AbstractIncidence of human yersiniosis in New Zealand has increased between 2013 and 2017. For surveillance and outbreak investigations it is essential that an appropriate level of discrimination between pathogenicYersinia enterocoliticaisolates is provided, in order to support epidemiological linking of connected cases. Subtyping of 227Y. enterocoliticaisolates was performed using a range of different typing methods, including biotyping, serotyping and seven loci multiple-locus variable-number tandem-repeat analysis (MLVA). In addition, core genome single-nucleotide polymorphism (core SNP) analysis and multi-locus sequence typing were performed on a subset of 69 isolates. Sixty-seven different MLVA types were identified. One MLVA profile was associated with an outbreak in the Bay of Plenty region, supported by epidemiological data. Core SNP analysis showed that all the outbreak-related isolates clustered together. The subtyping and epidemiological evidence suggests that the outbreak of yersiniosis in the Bay of Plenty region between October and December 2016 could be attributed to a point source. However, subtyping results further suggest that the same clone was isolated from several regions between August 2016 and March 2017. Core SNP analysis and MLVA typing failed to differentiate betweenY. enterocoliticabiotype 2 and biotype 3. For this reason, we propose that these biotypes should be reported as a single type namely:Y. enterocoliticabiotype 2/3 and that the serotype should be prioritised as an indicator of prevalence.


2021 ◽  
pp. 175342592110299
Author(s):  
Alexander Varzari ◽  
Igor V. Deyneko ◽  
Elena Tudor ◽  
Harald Grallert ◽  
Thomas Illig

Polymorphisms in genes that control immune function and regulation may influence susceptibility to pulmonary tuberculosis (TB). In this study, 14 polymorphisms in 12 key genes involved in the immune response ( VDR, MR1, TLR1, TLR2, TLR10, SLC11A1, IL1B, IL10, IFNG, TNF, IRAK1, and FOXP3) were tested for their association with pulmonary TB in 271 patients with TB and 251 community-matched controls from the Republic of Moldova. In addition, gene–gene interactions involved in TB susceptibility were analyzed for a total of 43 genetic loci. Single nucleotide polymorphism (SNP) analysis revealed a nominal association between TNF rs1800629 and pulmonary TB (Fisher exact test P = 0.01843). In the pairwise interaction analysis, the combination of the genotypes TLR6 rs5743810 GA and TLR10 rs11096957 GT was significantly associated with an increased genetic risk of pulmonary TB (OR = 2.48, 95% CI = 1.62–3.85; Fisher exact test P value = 1.5 × 10−5, significant after Bonferroni correction). In conclusion, the TLR6 rs5743810 and TLR10 rs11096957 two-locus interaction confers a significantly higher risk for pulmonary TB; due to its high frequency in the population, this SNP combination may serve as a novel biomarker for predicting TB susceptibility.


2014 ◽  
Vol 80 (7) ◽  
pp. 2125-2132 ◽  
Author(s):  
Narjol Gonzalez-Escalona ◽  
Ruth Timme ◽  
Brian H. Raphael ◽  
Donald Zink ◽  
Shashi K. Sharma

ABSTRACTClostridium botulinumis a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA+OrfX−) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA−OrfX+) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producingC. botulinumstrains: two strains with the HA+OrfX−cluster (69A and 32A) and one strain with the HA−OrfX+cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly availableC. botulinumgroup I strains revealed five distinct lineages. Strains 69A and 32A clustered with theC. botulinumtype A1 Hall group, and strain CDC297 clustered with theC. botulinumtype Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination ofC. botulinumgroup I strains and demonstrates the utility of this analysis in quickly differentiatingC. botulinumstrains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.


Sign in / Sign up

Export Citation Format

Share Document