Localization of actin filaments and microtubules in the cells of the Limulus lateral and ventral eyes

1992 ◽  
Vol 9 (3-4) ◽  
pp. 365-375 ◽  
Author(s):  
Bruce G. Calman ◽  
Steven C. Chamberlain

AbstractThe ommatidia of the lateral eye of the horseshoe crab, Limulus polyphemus, undergo rhythmic changes in structure that are driven by diurnal lighting and efferent neural activity from a circadian clock in the brain. This study uses cytochemical probes to investigate the cytoskeletal elements mediating these responses and to develop models for their control. Antibodies to actin and phalloidin, a specific F-actin probe, label the rhabdom of lateral eye ommatidia, the cone cells of the ommatidial aperture, the ommatidial sheath, and the peripheral regions of the photoreceptor (retinular cell) cytoplasm. These probes also label the rhabdomere of ventral photoreceptors. Antibodies to tubulin label the eccentric cell dendrite and soma in each lateral eye ommatidium, the cone cells of the aperture, and the peripheral retinular cell cytoplasm. Models are proposed for the cytoskeletal mechanisms involved in controlling aperture and rhabdom shape, pigment movement, and shedding of rhabdomeral membrane.

1987 ◽  
Vol 89 (3) ◽  
pp. 353-378 ◽  
Author(s):  
R B Barlow ◽  
E Kaplan ◽  
G H Renninger ◽  
T Saito

The sensitivity of the lateral eye of the horseshoe crab, Limulus polyphemus, is modulated by efferent optic nerve impulses transmitted from a circadian clock located in the brain (Barlow, R. B., Jr., S. J. Bolanowski, and M. L. Brachman. 1977. Science. 197:86-89). At night, the efferent impulses invade the retinular, eccentric, and pigment cells of every ommatidium, inducing multiple anatomical and physiological changes that combine to increase retinal sensitivity as much as 100,000 times. We developed techniques for recording transmembrane potentials from a single cell in situ for several days to determine what circadian changes in retinal sensitivity originate in the primary phototransducing cell, the retinular cell. We found that the direct efferent input to the photoreceptor cell decreases its noise and increases its response. Noise is decreased by reducing the rate of spontaneous bumps by up to 100%. The response is increased by elevating photon catch (photons absorbed per flash) as much as 30 times, and increasing gain (response per absorbed photon) as much as 40%. The cellular mechanism for reducing the rate of spontaneous quantum bumps is not known. The mechanism for increasing gain appears to be the modulation of ionic conductances in the photoreceptor cell membrane. The mechanism for increasing photon catch is multiple changes in the anatomy of retinal cells. We combine these cellular events in a proposed scheme for the circadian rhythm in the intensity coding of single photoreceptors.


Author(s):  
Steven C. Chamberlain

The lateral eye of the horseshoe crab, Limulus polyphemus, is an important model system for studies of visual processes such as phototransduction, lateral inhibition, and light adaptation. It has also been the system of choice for pioneering studies of the role of circadian efferent input from the brain to the eye. For example, light and efferent input interact in controlling the daily shedding of photosensitive membrane and photomechanical movements. Most recently, modeling efforts have begun to relate anatomy, physiology and visually guided behavior using parallel computing. My laboratory has pursued collaborative morphological studies of the compound eye for the past 15 years. Some of this research has been correlated structure/function studies; the rest has been studies of basic morphology and morphological process.


1994 ◽  
Vol 11 (5) ◽  
pp. 989-1001 ◽  
Author(s):  
Eric P. Hornstein ◽  
Daniel L. Sambursky ◽  
Steven C. Chamberlain

AbstractThe distribution of acetylcholinesterase (AChE) in the lateral eye and brain of the horseshoe crab was investigated with histochemical means using standard controls to eliminate butyrylcholinesterase and nonspecific staining. Intense staining was observed in the neural plexus of the lateral compound eye, in the lateral optic nerve, and in various neuropils of the brain. Nerve fibers with moderate to weak staining were widespread in the brain. No sornata were stained in either the lateral eye or the brain. The distribution of acetylcholinesterase in the supraesophageal ganglia and nerves of the giant barnacle was also investigated for comparison. Although both the median optic nerve of the barnacle and the lateral optic nerve of the horseshoe crab appear to contain the fibers of histaminergic neurons, only the lateral optic nerve of the horseshoe crab shows AChE staining. Other parts of the barnacle nervous system, however, showed intense AChE staining. These results along with the histochemical controls eliminate the possibility that some molecule found in histaminergic neurons accounted for the AChE staining but support the possibility that acetylcholine might be involved as a neurotransmitter in lateral inhibition in the horseshoe crab retina. Two reasonable neurotransmitter candidates for lateral inhibition, histamine and acetylcholine, must now be investigated.


1990 ◽  
Vol 4 (3) ◽  
pp. 237-255 ◽  
Author(s):  
Christian K. Kier ◽  
Steven C. Chamberlain

AbstractThe radial and longitudinal distribution of retinular screening pigment in the lateral eye of the horseshoe crabLimulus polyphemuswas quantified under a variety of experimental conditions. Pigment position was characterized by the center and width of the radial distribution at four levels in the ommatidium.Under diurnal lighting, intact animals show movement of pigment granules from the periphery of the retinular cell at night towards the junction of the arhabdomeral and rhabdomeral segments of the retinular cell in the day. In constant darkness, intact animals exhibit the same circadian rhythm in pigment migration. Animals with bilaterally cut optic nerves do not receive circadian efferent input from the brain and show little pigment movement in diurnal lighting. In all of these cases, pigment was either aggregated in a band just peripheral to the rays of the rhabdom or dispersed to the periphery of the retinular cell.When dark-adapted animals are exposed to a sudden large light increment, pigment moves inward between the rays of the rhabdom. During the day, this inward response begins immediately and reverses as the ommatidial aperture begins to close. At night, the onset of the inward movement is delayed, but then occurs more rapidly than during the day. No significant longitudinal movement of photoreceptor screening pigment was detected under any of these experimental conditions.Two opposing mechanisms control the movement of screening pigment in these cells. Release of neurotransmitters from the circadian efferents causes outward movement; large increments of light cause inward movement. In the absence of sudden changes in light intensity, circadian efferent input, not cyclic lighting, appears to be the major determinant of screening pigment position. A sudden and large increment of light triggers the rapid inward movement which appears to be a protective mechanism optimized for daytime performance.


Author(s):  
James A. Anderson

This chapter gives three examples of real neural computation. The conclusion is that the “brain doesn’t work by logic.” First, is the Limulus (horseshoe crab) lateral eye. The neural process of “lateral inhibition” tunes the neural response of the compound eye to allow crabs to better see other crabs for mating. Second, the retina of the frog contains cells that are selective to specific properties of the visual image. The frog responds strongly to the moving image of a bug with one class of selective retinal receptors. Third, experiments on patients undergoing neurosurgery for epilepsy found single neurons in several cortical areas that were highly selective to differing images, text strings, and spoken names of well-known people. In addition, new selective responses could be formed quickly. The connection to concepts in cognitive science seems inevitable. One possible mechanism is through associatively linked “cell assemblies.”


2009 ◽  
Vol 102 (2) ◽  
pp. 1132-1138 ◽  
Author(s):  
Amanda R. Bolbecker ◽  
Corrinne C. M. Lim-Kessler ◽  
Jia Li ◽  
Alicia Swan ◽  
Adrienne Lewis ◽  
...  

Efferent nerves coursing from the brain to the lateral eye of the horseshoe crab, Limulus polyphemus, increase its nighttime sensitivity to light. They release octopamine, which produces a categorical increase of photoreceptor response duration in vitro. Analogous in vivo timing effects on the electroretinogram (ERG) were demonstrated when octopamine was infiltrated into the eye of an otherwise intact animal; nighttime ERGs were longer than daytime ERGs. Related effects on the ERG were produced by daytime electrical stimulation of efferent fibers. Surprisingly, in a departure from effects predicted solely from in vitro octopamine data, nighttime ERG onsets were also accelerated relative to daytime ERG onsets. Drawing on earlier reports, these remarkable accelerations led to an examination of substance P as another candidate neuromodulator. It demonstrated that infiltrations of either modulator into the lateral eyes of otherwise intact crabs increased the amplitude of ERG responses but that each candidate modulator induced daytime responses that specifically mimicked one of the two particular aspects of the timing differences between day- and nighttime ERGs: octopamine increased the duration of daytime ERGs and substance P infiltrated during the day accelerated response onset. These results indicate that, in addition to octopamine's known role as an efferent neuromodulator that increases nighttime ERG amplitudes, octopamine clearly also affects the timing of photoreceptor responses. But these infiltration data go further and strongly suggest that substance P may also be released into the lateral eye at night, thereby accelerating the ERG's onset in addition to increasing its amplitude.


Author(s):  
Carolyn A. Larabell ◽  
David G. Capco ◽  
G. Ian Gallicano ◽  
Robert W. McGaughey ◽  
Karsten Dierksen ◽  
...  

Mammalian eggs and embryos contain an elaborate cytoskeletal network of “sheets” which are distributed throughout the entire cell cytoplasm. Cytoskeletal sheets are long, planar structures unlike the cytoskeletal networks typical of somatic cells (actin filaments, microtubules, and intermediate filaments), which are filamentous. These sheets are not found in mammalian somatic cells nor are they found in nonmammalian eggs or embryos. Evidence that they are, indeed, cytoskeletal in nature is derived from studies demonstrating that 1) the sheets are retained in the detergent-resistant cytoskeleton fraction; 2) there are no associated membranes (determined by freeze-fracture); and 3) the sheets dissociate into filaments at the blastocyst stage of embryogenesis. Embedment-free sections of hamster eggs viewed at 60 kV show sheets running across the egg cytoplasm (Fig. 1). Although this approach provides excellent global views of the sheets and their reorganization during development, the mechanism of image formation for embedment-free sections does not permit evaluation of the sheets at high resolution.


1988 ◽  
Vol 106 (3) ◽  
pp. 747-760 ◽  
Author(s):  
G Rinnerthaler ◽  
B Geiger ◽  
J V Small

We have correlated the motility of the leading edge of fibroblasts, monitored by phase-contrast cinematography, with the relative distributions of several cytoskeletal elements (vinculin, tubulin, and actin) as well as with the contact patterns determined by interference reflection microscopy. This analysis has revealed the involvement of both ruffles and microspikes, as well as microtubules in the initiation of focal contact formation. Nascent vinculin sites within the leading edge or at its base, taken as primordial cell-substrate contacts, were invariably colocalized with sites that showed a history of transient, prolonged, or cyclic ruffling activity. Extended microspike structures, often preceded the formation of ruffles. Immunofluorescent labeling indicated that some of these primordial contacts were in close apposition to the ends of microtubules that penetrated into the leading edge. By fluorescence and electron microscopy short bundles of actin filaments found at the base of the leading edge were identified as presumptive, primordial contacts. It is concluded that ruffles and microspikes, either independently or in combination, initiate and mark the sites for future contact. Plaque proteins then accumulate (within 10-30 s) at the contract site and, beneath ruffles, induce localized bundling of actin filaments. We propose that all primordial contacts support traction for leading edge protrusion but that only some persist long enough to nucleate stress fiber assembly. Microtubules are postulated as the elements that select, stabilize, and potentiate the formation of these latter, long-lived contacts.


2017 ◽  
Vol 24 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Selen Atasoy ◽  
Gustavo Deco ◽  
Morten L. Kringelbach ◽  
Joel Pearson

A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at “rest.” Here, we introduce the concept of harmonic brain modes—fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.


Sign in / Sign up

Export Citation Format

Share Document