Dendritic impulse collisions and shifting sites of action potential initiation contract and extend the receptive field of an amacrine cell

2007 ◽  
Vol 24 (4) ◽  
pp. 619-634 ◽  
Author(s):  
AUDREY S. ROYER ◽  
ROBERT F. MILLER

We evaluated the contributions of somatic and dendritic impulses to the receptive field dimensions of amacrine cells in the amphibian retina. For this analysis, we used the NEURON simulation program with a multicompartmental, multichannel model of an On-Off amacrine cell with a three-dimensional structure obtained through computer tracing techniques. Simulated synaptic inputs were evenly spaced along the dendritic branches and organized into eight annuli of increasing radius. The first set of simulations activated each ring progressively to simulate an area summation experiment, while a second approach activated each annulus individually. Both sets of simulations were done with and without the presence of Na channels in the dendrites and soma. Unexpectedly, the receptive field dimensions observed in the area summation simulations was often smaller than that predicted from the summation of the annular simulations. Collisions of action potentials moving in opposite directions in the dendrites largely accounted for this contraction in receptive field size for the area summation studies. The presence of dendritic Na channels increased the size of the receptive field beyond that achieved in their absence and allowed the physiological size of the receptive field to approximate the physical dimensions of the dendritic tree. This receptive field augmentation was the result of impulse generating ability in the dendrites which enhanced the signal observed at the soma. These simulations provide a plausible mechanistic explanation for physiological recordings from amacrine cells that show similar phenomena.

1997 ◽  
Vol 14 (3) ◽  
pp. 507-522 ◽  
Author(s):  
Donna K. Stafford ◽  
Dennis M. Dacey

AbstractWe characterized the light response, morphology, and receptive-field structure of a distinctive amacrine cell type (Dacey, 1989), termed here the Al amacrine, by applying intracellular recording and staining methods to the macaque monkey retina in vitro. A1 cells show two morphologically distinct components: a highly branched and spiny dendritic tree, and a more sparsely branched axon-like tree that arises from one or more hillock-like structures near the soma and extends for several millimeters beyond the dendritic tree. Intracellular injection of Neurobiotin reveals an extensive and complex pattern of tracer coupling to neighboring A1 amacrine cells, to two other amacrine cell types, and to a single ganglion cell type. The A1 amacrine is an ON-OFF cell, showing a large (10–20 mV) transient depolarization at both onset and offset of a photopic, luminance modulated stimulus. A burst of fast, large-amplitude (Σ60 mV) action potentials is associated with the depolarizations at both the ON and OFF phase of the response. No evidence was found for an inhibitory receptive-field surround. The spatial extent of the ON-OFF response was mapped by measuring the strength of the spike discharge and/or the amplitude of the depolarizing slow potential as a function of the position of a bar or spot of light within the receptive field. Receptive fields derived from the slow potential and associated spike discharge corresponded in size and shape. Thus, the amplitude of the slow potential above spike threshold was well encoded as spike frequency. The diameter of the receptive field determined from the spike discharge was Σ10% larger than the spiny dendritic field. The correspondence in size between the spiking receptive field and the spiny dendritic tree suggests that light driven signals are conducted to the soma from the dendritic tree but not from the axon-like arbor. The function of the axon-like component is unknown but we speculate that it serves a classical output function, transmitting spikes distally from initiation sites near the soma.


2017 ◽  
Vol 114 (43) ◽  
pp. 11518-11523 ◽  
Author(s):  
Minggang Chen ◽  
Seunghoon Lee ◽  
Z. Jimmy Zhou

A basic scheme of neuronal organization in the mammalian retina is the segregation of ON and OFF pathways in the inner plexiform layer (IPL), where glutamate is released from ON and OFF bipolar cell terminals in separate inner (ON) and outer (OFF) sublayers in response to light intensity increments and decrements, respectively. However, recent studies have found that vGluT3-expressing glutamatergic amacrine cells (GACs) generate ON-OFF somatic responses and release glutamate onto both ON and OFF ganglion cell types, raising the possibility of crossover excitation in violation of the canonical ON-OFF segregation scheme. To test this possibility, we recorded light-evoked Ca2+ responses from dendrites of individual GACs infected with GCaMP6s in mouse. Under two-photon imaging, a single GAC generated rectified local dendritic responses, showing ON-dominant responses in ON sublayers and OFF-dominant responses in OFF sublayers. This unexpected ON-OFF segregation within a small-field amacrine cell arose from local synaptic processing, mediated predominantly by synaptic inhibition. Multiple forms of synaptic inhibition compartmentalized the GAC dendritic tree and endowed all dendritic varicosities with a small-center, strong-surround receptive field, which varied in receptive field size and degree of ON-OFF asymmetry with IPL depth. The results reveal a form of short-range dendritic autonomy that enables a small-field, dual-transmitter amacrine cell to process diverse dendritic functions in a stratification level- and postsynaptic target-specific manner, while preserving the fundamental ON-OFF segregation scheme for parallel visual processing and high spatial resolution for small object motion and uniformity detection.


1997 ◽  
Vol 14 (6) ◽  
pp. 1153-1165 ◽  
Author(s):  
Stewart A. Bloomfield ◽  
Daiyan Xin

AbstractRecent studies have shown that amacrine and ganglion cells in the mammalian retina are extensively coupled as revealed by the intercellular movement of the biotinylated tracers biocytin and Neurobiotin. These demonstrations of tracer coupling suggest that electrical networks formed by proximal neurons (i.e. amacrine and ganglion cells) may underlie the lateral propagation of signals across the inner retina. We studied this question by comparing the receptive-field size, dendritic-field size, and extent of tracer coupling of amacrine and ganglion cells in the dark-adapted, supervised, isolated retina eyecup of the rabbit. Our results indicate that while the center-receptive fields of proximal neurons are approximately 15% larger than their corresponding dendritic diameters, this slight difference can be explained by factors other than electrical coupling such as tissue shrinkage associated with histological processing. However, the extent of tracer coupling of amacrine and ganglion cells was, on average, about twice the size of the corresponding receptive fields. Thus, the receptive field of an individual proximal neuron matched far more closely to its dendritic diameter than to the size of the tracer-coupled network of cells to which it belonged. The exception to this rule was the AII amacrine cells for which center-receptive fields were 2–3 times the size of their dendritic diameters but matched closely to the size of the tracer-coupled arrays. Thus, with the exception of AII cells, our data indicate that tracer coupling between proximal neurons is not associated with an enlargement of their receptive fields. Our results, then, provide no evidence for electrical coupling or, at least, indicate that extensive lateral spread of visual signals does not occur in the proximal mammalian retina.


2019 ◽  
Author(s):  
Mohammadreza Soltaninejad ◽  
Craig J. Sturrock ◽  
Marcus Griffiths ◽  
Tony P. Pridmore ◽  
Michael P. Pound

AbstractWe address the complex problem of reliably segmenting root structure from soil in X-ray Computed Tomography (CT) images. We utilise a deep learning approach, and propose a state-of-the-art multi-resolution architecture based on encoder-decoders. While previous work in encoder-decoders implies the use of multiple resolutions simply by downsampling and upsampling images, we make this process explicit, with branches of the network tasked separately with obtaining local high-resolution segmentation, and wider low-resolution contextual information. The complete network is a memory efficient implementation that is still able to resolve small root detail in large volumetric images. We evaluate our approach by comparing against a number of different encoder-decoder based architectures from the literature, as well as a popular existing image analysis tool designed for root CT segmentation. We show qualitatively and quantitatively that a multi-resolution approach offers substantial accuracy improvements over a both a small receptive field size in a deep network, or a larger receptive field in a shallower network. We obtain a Dice score of 0.59 compared with 0.41 for the closest competing method. We then further improve performance using an incremental learning approach, in which failures in the original network are used to generate harder negative training examples. Results of this process raise the precision of the network, and improve the Dice score to 0.66. Our proposed method requires no user interaction, is fully automatic, and identifies large and fine root material throughout the whole volume. The 3D segmented output of our method is well-connected, allowing the recovery of structured representations of root system architecture, and so may be successfully utilised in root phenotyping.


Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 128
Author(s):  
David T. Wilson ◽  
Paramjit S. Bansal ◽  
David A. Carter ◽  
Irina Vetter ◽  
Annette Nicke ◽  
...  

Conopeptides belonging to the A-superfamily from the venomous molluscs, Conus, are typically α-conotoxins. The α-conotoxins are of interest as therapeutic leads and pharmacological tools due to their selectivity and potency at nicotinic acetylcholine receptor (nAChR) subtypes. Structurally, the α-conotoxins have a consensus fold containing two conserved disulfide bonds that define the two-loop framework and brace a helical region. Here we report on a novel α-conotoxin Pl168, identified from the transcriptome of Conus planorbis, which has an unusual 4/8 loop framework. Unexpectedly, NMR determination of its three-dimensional structure reveals a new structural type of A-superfamily conotoxins with a different disulfide-stabilized fold, despite containing the conserved cysteine framework and disulfide connectivity of classical α-conotoxins. The peptide did not demonstrate activity on a range of nAChRs, or Ca2+ and Na+ channels suggesting that it might represent a new pharmacological class of conotoxins.


2007 ◽  
Vol 24 (4) ◽  
pp. 449-457 ◽  
Author(s):  
CHRISTOPHER M. DAVENPORT ◽  
PETER B. DETWILER ◽  
DENNIS M. DACEY

The A1 cell is an axon-bearing amacrine cell of the primate retina with a diffusely stratified, moderately branched dendritic tree (∼400 μm diameter). Axons arise from proximal dendrites forming a second concentric, larger arborization (>4 mm diameter) of thin processes with bouton-like swellings along their length. A1 cells are ON-OFF transient cells that fire a brief high frequency burst of action potentials in response to light (Stafford & Dacey, 1997). It has been hypothesized that A1 cells receive local input to their dendrites, with action potentials propagating output via the axons across the retina, serving a global inhibitory function. To explore this hypothesis we recorded intracellularly from A1 cells in an in vitro macaque monkey retina preparation. A1 cells have an antagonistic center-surround receptive field structure for the ON and OFF components of the light response. Blocking the ON pathway with L-AP4 eliminated ON center responses but not OFF center responses or ON or OFF surround responses. Blocking GABAergic inhibition with picrotoxin increased response amplitudes without affecting receptive field structure. TTX abolished action potentials, with little effect on the sub-threshold light response or basic receptive field structure. We also used multi-photon laser scanning microscopy to record light-induced calcium transients in morphologically identified dendrites and axons of A1 cells. TTX completely abolished such calcium transients in the axons but not in the dendrites. Together these results support the current model of A1 function, whereby the dendritic tree receives synaptic input that determines the center-surround receptive field; and action potentials arise in the axons, which propagate away from the dendritic field across the retina.


2004 ◽  
Vol 21 (2) ◽  
pp. 145-155 ◽  
Author(s):  
LAYNE L. WRIGHT ◽  
DAVID I. VANEY

The type 1 polyaxonal (PA1) cell is a distinct type of axon-bearing amacrine cell whose soma commonly occupies an interstitial position in the inner plexiform layer; the proximal branches of the sparse dendritic tree produce 1–4 axon-like processes, which form an extensive axonal arbor that is concentric with the smaller dendritic tree (Dacey, 1989; Famiglietti, 1992a,b). In this study, intracellular injections of Neurobiotin have revealed the complete dendritic and axonal morphology of the PA1 cells in the rabbit retina, as well as labeling the local array of PA1 cells through homologous tracer coupling. The dendritic-field area of the PA1 cells increased from a minimum of 0.15 mm2 (0.44-mm equivalent diameter) on the visual streak to a maximum of 0.67 mm2 (0.92-mm diameter) in the far periphery; the axonal-field area also showed a 3-fold variation across the retina, ranging from 3.1 mm2 (2.0-mm diameter) to 10.2 mm2 (3.6-mm diameter). The increase in dendritic- and axonal-field size was accompanied by a reduction in cell density, from 60 cells/mm2 in the visual streak to 20 cells/mm2 in the far periphery, so that the PA1 cells showed a 12 times overlap of their dendritic fields across the retina and a 200–300 times overlap of their axonal fields. Consequently, the axonal plexus was much denser than the dendritic plexus, with each square millimeter of retina containing ∼100 mm of dendrites and ∼1000 mm of axonal processes. The strong homologous tracer coupling revealed that ∼45% of the PA1 somata were located in the inner nuclear layer, ∼50% in the inner plexiform layer, and ∼5% in the ganglion cell layer. In addition, the Neurobiotin-injected PA1 cells sometimes showed clear heterologous tracer coupling to a regular array of small ganglion cells, which were present at half the density of the PA1 cells. The PA1 cells were also shown to contain elevated levels of γ-aminobutyric acid (GABA), like other axon-bearing amacrine cells.


1995 ◽  
Vol 12 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Ralph J. Jensen

AbstractStarburst amacrine cells in the rabbit retina were labeled following an intraocular injection of the fluorescent dye, 4, 6, diamidino-2-phenylindole (DAPI). From each eye a strip of retina was removed, mounted on a platform beneath an epifluorescence microscope, and superfused with a physiological solution. The tip of a tungsten microelectrode (for extracellular recording) was visually positioned near the cell body of a DAPI-labeled starburst amacrine cell that was located in the ganglion cell layer. Light-evoked responses from the displaced starburst amacrine cells were studied in normal retinas and in retinas that had received a small electrolytic lesion near the optic disk 5–9 months beforehand. In normal retinas, a small spot of light centered over the receptive field of a displaced starburst amacrine cell in nearly all cases evoked a brief burst of spikes only at light onset. When stimulated with a large spot or an annulus of light, many cells gave a small burst of spikes at light offset. In lesioned retinas, the light responses of displaced starburst amacrine cells were recorded in areas of the retina where ganglion cells had degenerated. All cells responded with a large burst of spikes at the onset and offset of a small, centered spot of light. Large spots and annuli of light also evoked robust ON/OFF responses from these cells. The results from this study show that the receptive-field properties of displaced starburst amacrine cells change following axotomy-induced degeneration of ganglion cells. This finding indicates that changes in either synaptic transmission or the membrane properties of neurons occur in the retina following degeneration of ganglion cells.


1996 ◽  
Vol 134 (6) ◽  
pp. 1349-1363 ◽  
Author(s):  
M Gotta ◽  
T Laroche ◽  
A Formenton ◽  
L Maillet ◽  
H Scherthan ◽  
...  

We have developed a novel technique for combined immunofluorescence/in situ hybridization on fixed budding yeast cells that maintains the three-dimensional structure of the nucleus as monitored by focal sections of cells labeled with fluorescent probes and by staining with a nuclear pore antibody. Within the resolution of these immunodetection techniques, we show that proteins encoded by the SIR3, SIR4, and RAP1 genes colocalize in a statistically significant manner with Y' telomere-associated DNA sequences. In wild-type cells the Y' in situ hybridization signals can be resolved by light microscopy into fewer than ten foci per diploid nucleus. This suggests that telomeres are clustered in vegetatively growing cells, and that proteins essential for telomeric silencing are concentrated at their sites of action, i.e., at telomeres and/or subtelomeric regions. As observed for Rap1, the Sir4p staining is diffuse in a sir3- strain, and similarly, Sir3p staining is no longer punctate in a sir4- strain, although the derivatized Y' probe continues to label discrete sites in these strains. Nonetheless, the Y' FISH is altered in a qualitative manner in sir3 and sir4 mutant strains, consistent with the previously reported phenotypes of shortened telomeric repeats and loss of telomeric silencing.


1996 ◽  
Vol 75 (5) ◽  
pp. 1878-1893 ◽  
Author(s):  
S. A. Bloomfield

1. Intracellular recordings were obtained from 21 amacrine cells and 12 ganglion cells in the isolated, superfused retina-eyecup of the rabbit. Cells were subsequently labeled with horseradish peroxidase (HRP) or N-(2-aminoethyl)-biotinamide hydrochloride (Neurobiotin) for morphologic identification. 2. Initial experiments performed on three amacrine cells and three ganglion cells showed that 1 microM tetrodotoxin (TTX) abolished all spiking. This included both large-amplitude and small-amplitude spikes recorded in many amacrine cells, indicating that they are mediated by voltage-gated sodium channels. 3. The center-receptive-field size of 18 amacrine cells and 9 ganglion cells was measured with the use of a 50-microns-wide/6.0-mm-long rectangular slit of light that was displaced along its minor axis (parallel to the visual streak) in steps as small as 3 microns. The retina was then bathed in 1 microM TTX, or individual cells were injected with 50 mM QX-314, a quatemary lidocaine derivative, to abolish all spiking, and the center-receptive field of each cell was then remeasured. 4. Although TTX blocked spiking in all ganglion cells (dendritic diameters ranging from 302 to 969 microns), it produced no significant change in the size of their center-receptive fields. This finding argues that passive, electrotonic spread of synaptic inputs to ganglion cell dendritic arbors is adequate for efficient propagation from terminal branches to the soma; active propagation via voltage-gated sodium channels plays no apparent role. 5. In contrast, TTX and QX-314 had variable effect on the receptive fields of amacrine cells, which was related to the size of their dendritic arbors. Whereas TTX had no significant effect on the receptive-field size of amacrine cells whose dendritic arbors were < 525 microns across, the center-receptive fields of larger amacrine cells were reduced, on average, by 40%; QX-314 produced a very similar average reduction of 39%. Moreover, for these larger cells, there was a direct relationship between the magnitude of the reduction in receptive-field size produced by TTX or QX-314 and the size of a cell's dendritic arbor. This relationship was true whether the change in receptive-field size was measured in absolute terms or as percent reduction from control values. 6. Interestingly, TTX and QX-314 also significantly reduced the amplitude of slow potentials recorded in amacrine cells by an average of 22 and 24%, respectively. However, the amplitude of slow potentials recorded in ganglion cells were relatively uneffected by TTX. 7. These findings are consistent with the idea that, for amacrine cells with dendritic arbors spanning > 525 microns, active propagation of synaptic signals mediated by voltage-gated sodium channels is necessary for efficient movement of information across a cell's dendritic arbor and thus plays a major role in shaping their receptive fields. Although the TTX effects may also reflect an indirect contribution from altered synaptic input derived from presynaptic spiking neurons, the strong similarity between the effects of TTX and QX-314 argues that any such contribution was minor. For smaller amacrine cells, passive, electrotonic spread of signals appears adequate for efficient propagation within their limited dendritic arbors.


Sign in / Sign up

Export Citation Format

Share Document