Number and topography of cones, rods and optic nerve axons in New and Old World primates

2008 ◽  
Vol 25 (3) ◽  
pp. 289-299 ◽  
Author(s):  
BARBARA L. FINLAY ◽  
EDNA CRISTINA S. FRANCO ◽  
ELIZABETH S. YAMADA ◽  
JUSTIN C. CROWLEY ◽  
MICHAEL PARSONS ◽  
...  

To better understand the evolution of spatial and color vision, the number and spatial distributions of cones, rods, and optic nerve axon numbers were assessed in seven New World primates (Cebus apella, Saimiri ustius, Saguinus midas niger, Alouatta caraya, Aotus azarae, Calllithrix jacchus, and Callicebus moloch). The spatial distribution and number of rods and cones was determined from counts of retinal whole mounts. Optic axon number was determined from optic nerve sections by electron microscopy. These data were amassed with existing data on retinal cell number and distribution in Old World primates, and the scaling of relative densities and numbers with respect to retinal area, eye and brain sizes, and foveal specializations were evaluated. Regular scaling of all cell types was observed, with the exceptionally large, rod-enriched retina of the nocturnal owl monkey Aotus azarae, and the unusually high cone density of the fovea of the trichromatic howler monkey Alouatta caraya presenting interesting variations on this basic plan. Over all species, the lawful scaling of rods, cones, and retinal ganglion cell number is hypothesized to result from a conserved sequence of cell generation that defends retinal acuity and sensitivity over a large range of eye sizes.

2018 ◽  
Author(s):  
Rebecca L. Rausch ◽  
Stephanie B. Syc-Mazurek ◽  
Kimberly A. Fernandes ◽  
Michael P. Wilson ◽  
Richard T. Libby

AbstractThe mitogen activated protein kinase (MAPK) pathway has been shown to be involved in both neurodevelopment and neurodegeneration. c-Jun N-terminal kinase (JNK), a MAPK shown to be important in retinal development and after optic nerve crush injury, is regulated by two upstream kinases: MKK4 and MKK7. The specific requirements of MKK4 and MKK7 in retinal development and retinal ganglion cell (RGC) death after axonal injury, however, are currently undefined. Optic nerve injury is an important insult in many neurologic conditions including traumatic, ischemic, inflammatory, and glaucomatous optic neuropathies. Mice deficient in Mkk4, Mkk7, and both Mkk4 and Mkk7 were generated. Immunohistochemistry was used to study the distribution and structure of retinal cell types and to assess RGC survival after optic nerve injury (mechanical controlled optic nerve crush; CONC). Adult Mkk4 and Mkk7 deficient retinas had all retinal cell types. With the exception of small areas of lamination defects with photoreceptors in Mkk4 deficient mice, the retinas of both mutants were grossly normal. Deficiency of Mkk4 or Mkk7 reduced JNK signaling after axonal injury in RGCs. Mkk4 and Mkk7 deficient retinas had a significantly greater percentage of surviving RGCs 35 days after CONC as compared to wildtype controls (Mkk4: 51.5%, Mkk7: 29.1% WT: 15.2%; p<0.001). Combined deficiency of Mkk4 and Mkk7 caused failure of optic nerve formation, irregular retinal axonal trajectories, disruption of retinal lamination, clumping of RGC cell bodies, and dendritic fasciculation of dopaminergic amacrine cells. These results suggest that MKK4 and MKK7 may serve redundant and unique roles in molecular signaling important for retinal development and injury response following axonal insult.


2009 ◽  
Vol 46 (4) ◽  
pp. 662-666 ◽  
Author(s):  
C. Juan-Sallés ◽  
J. A. Ramos-Vara ◽  
M. M. Garner

Six New World primates, including 2 golden lion tamarins (Leontopithecus rosalia), 2 cotton-top tamarins (Saguinus o. oedipus), 1 black howler monkey (Alouatta caraya), and 1 black-handed spider monkey (Ateles g. geoffroyi), were diagnosed with unilateral (4/6) or bilateral (1/6) adrenal or extra-adrenal (1/6) pheochromocytoma by light microscopy and immunohistochemical staining for chromogranin A. Overt invasive behavior or metastases were not observed in any primate, and thus these neoplasms were considered benign. All primates either died spontaneously (4/6) or were euthanatized (2/6) as a result of concurrent malignant neoplasia, infection, renal disease, or a combination of several disease processes. Although we did not determine whether these pheochromocytomas were functional, all 6 primates had myocardial fibrosis, and some had arteriosclerosis.


2021 ◽  
Vol 22 (2) ◽  
pp. 978
Author(s):  
Skadi Lau ◽  
Manfred Gossen ◽  
Andreas Lendlein ◽  
Friedrich Jung

Although cardiovascular devices are mostly implanted in arteries or to replace arteries, in vitro studies on implant endothelialization are commonly performed with human umbilical cord-derived venous endothelial cells (HUVEC). In light of considerable differences, both morphologically and functionally, between arterial and venous endothelial cells, we here compare HUVEC and human umbilical cord-derived arterial endothelial cells (HUAEC) regarding their equivalence as an endothelial cell in vitro model for cardiovascular research. No differences were found in either for the tested parameters. The metabolic activity and lactate dehydrogenase, an indicator for the membrane integrity, slightly decreased over seven days of cultivation upon normalization to the cell number. The amount of secreted nitrite and nitrate, as well as prostacyclin per cell, also decreased slightly over time. Thromboxane B2 was secreted in constant amounts per cell at all time points. The Von Willebrand factor remained mainly intracellularly up to seven days of cultivation. In contrast, collagen and laminin were secreted into the extracellular space with increasing cell density. Based on these results one might argue that both cell types are equally suited for cardiovascular research. However, future studies should investigate further cell functionalities, and whether arterial endothelial cells from implantation-relevant areas, such as coronary arteries in the heart, are superior to umbilical cord-derived endothelial cells.


Author(s):  
Jeannie Chan ◽  
Wen Yao ◽  
Timothy D. Howard ◽  
Gregory A. Hawkins ◽  
Michael Olivier ◽  
...  

1993 ◽  
Vol 60 (3) ◽  
pp. 169-172 ◽  
Author(s):  
Julio C&eacute;sar Bicca-Marques. ◽  
Claudia Calegaro-Marques

2020 ◽  
Vol 117 (31) ◽  
pp. 18780-18787
Author(s):  
Charles L. Zucker ◽  
Paul S. Bernstein ◽  
Richard L. Schalek ◽  
Jeff W. Lichtman ◽  
John E. Dowling

Macular telangiectasia type 2 (MacTel), a late-onset macular degeneration, has been linked to a loss in the retina of Müller glial cells and the amino acid serine, synthesized by the Müller cells. The disease is confined mainly to a central retinal region called the MacTel zone. We have used electron microscopic connectomics techniques, optimized for disease analysis, to study the retina from a 48-y-old woman suffering from MacTel. The major observations made were specific changes in mitochondrial structure within and outside the MacTel zone that were present in all retinal cell types. We also identified an abrupt boundary of the MacTel zone that coincides with the loss of Müller cells and macular pigment. Since Müller cells synthesize retinal serine, we propose that a deficiency of serine, required for mitochondrial maintenance, causes mitochondrial changes that underlie MacTel development.


2001 ◽  
Vol 18 (4) ◽  
pp. 559-570 ◽  
Author(s):  
B.E. REESE ◽  
M.A. RAVEN ◽  
K.A. GIANNOTTI ◽  
P.T. JOHNSON

The present study has examined the emergence of cholinergic stratification within the developing inner plexiform layer (IPL), and the effect of ablating the cholinergic amacrine cells on the formation of other stratifications within the IPL. The population of cholinergic amacrine cells in the ferret's retina was identified as early as the day of birth, but their processes did not form discrete strata until the end of the first postnatal week. As development proceeded over the next five postnatal weeks, so the positioning of the cholinergic strata shifted within the IPL toward the outer border, indicative of the greater ingrowth and elaboration of processes within the innermost parts of the IPL. To examine whether these cholinergic strata play an instructive role upon the development of other stratifications which form within the IPL, one-week-old ferrets were treated with l-glutamate in an attempt to ablate the population of cholinergic amacrine cells. Such treatment was shown to be successful, eliminating all of the cholinergic amacrine cells as well as the alpha retinal ganglion cells in the central retina. The remaining ganglion cell classes as well as a few other retinal cell types were partially reduced, while other cell types were not affected, and neither retinal histology nor areal growth was compromised in these ferrets. Despite this early loss of the cholinergic amacrine cells, which are eliminated within 24 h, other stratifications within the IPL formed normally, as they do following early elimination of the entire ganglion cell population. While these cholinergic amacrine cells are present well before other cell types have differentiated, apparently neither they, nor the ganglion cells, play a role in determining the depth of stratification for other retinal cell types.


1990 ◽  
Vol 259 (6) ◽  
pp. L415-L425 ◽  
Author(s):  
P. E. Roberts ◽  
D. M. Phillips ◽  
J. P. Mather

A novel epithelial cell from normal neonatal rat lung has been isolated, established, and maintained for multiple passages in the absence of serum, without undergoing crisis or senescence. By careful manipulation of the nutrition/hormonal microenvironment, we have been able to select, from a heterogeneous population, a single epithelial cell type that can maintain highly differentiated features in vitro. This cell type has characteristics of bronchiolar epithelial cells. A clonal line, RL-65, has been selected and observed for greater than 2 yr in continuous culture. It has been characterized by ultrastructural, morphological, and biochemical criteria. The basal medium for this cell line is Ham's F12/Dulbecco's modified Eagle's (DME) medium plus insulin (1 micrograms/ml), human transferrin (10 micrograms/ml), ethanolamine (10(-4) M), phosphoethanolamine (10(-4) M), selenium (2.5 x 10(-8) M), hydrocortisone (2.5 x 10(-7) M), and forskolin (5 microM). The addition of 150 micrograms/ml of bovine pituitary extract to the defined basal medium stimulates a greater than 10-fold increase in cell number and a 50- to 100-fold increase in thymidine incorporation. The addition of retinoic acid results in further enhancement of cell growth and complete inhibition of keratinization. We have demonstrated a strategy that may be applicable to isolating other cell types from the lung and maintaining their differentiated characteristics for long-term culture in vitro. Such a culture system promises to be a useful model in which to study cellular events associated with differentiation and proliferation in the lung and to better understand the molecular mechanisms involved in these events.


Sign in / Sign up

Export Citation Format

Share Document