A role for aquaporin-4 in fluid regulation in the inner retina

2009 ◽  
Vol 26 (2) ◽  
pp. 159-165 ◽  
Author(s):  
MELINDA J. GOODYEAR ◽  
SHEILA G. CREWTHER ◽  
BARBARA M. JUNGHANS

AbstractMany diverse retinal disorders are characterized by retinal edema; yet, little experimental attention has been given to understanding the fundamental mechanisms underlying and contributing to these fluid-based disorders. Water transport in and out of cells is achieved by specialized membrane channels, with most rapid water transport regulated by transmembrane water channels known as aquaporins (AQPs). The predominant AQP in the mammalian retina is AQP4, which is expressed on the Müller glial cells. Müller cells have previously been shown to modulate neuronal activity by modifying the concentrations of ions, neurotransmitters, and other neuroactive substances within the extracellular space between the inner and the outer limiting membrane. In doing so, Müller cells maintain extracellular homeostasis, especially with regard to the spatial buffering of extracellular potassium (K+) via inward rectifying K+ channels (Kir channels). Recent studies of water transport and the spatial buffering of K+ through glial cells have highlighted the involvement of both AQP4 and Kir channels in regulating the extracellular environment in the brain and retina. As both glial functions are associated with neuronal activation, controversy exists in the literature as to whether the relationship is functionally dependent. It is argued in this review that as AQP4 channels are likely to be the conduit for facilitating fluid homeostasis in the inner retina during light activation, AQP4 channels are also likely to play a consequent role in the regulation of ocular volume and growth. Recent research has already shown that the level of AQP4 expression is associated with environmentally driven manipulations of light activity on the retina and the development of myopia.

1992 ◽  
Vol 70 (S1) ◽  
pp. S239-S247 ◽  
Author(s):  
Andreas Reichenbach ◽  
Andre Henke ◽  
Wolfgang Eberhardt ◽  
Winfried Reichelt ◽  
Dietrich Dettmer

During onset and offset of illumination, considerable changes in extracellular K+ concentration ([K+]e) occur within particular retinal layers. There are two ways in which glial cells may control [K+]e: (1) by space-independent processes, for example, by K+ uptake due to the Na+–K+ ATPase, and (2) by space-dependent processes, that is, by spatial buffering currents flowing through K+ channels. Rabbit retinal Müller (glial) cells were studied for expression of mechanisms supporting both kinds of processes. This review demonstrates that rabbit Müller cells have Na–K pumps whose distribution and properties are highly adapted to meet the needs of efficient K+ clearance. Furthermore, spatial buffering currents through specialized K+ channels of Müller cells greatly accelerate retinal K+ clearance during and after stimulation.Key words: glia, retina, potassium clearance, sodium–potassium pump, potassium channels.


2017 ◽  
Vol 118 (6) ◽  
pp. 3132-3143 ◽  
Author(s):  
Matthew A. Kreitzer ◽  
David Swygart ◽  
Meredith Osborn ◽  
Blair Skinner ◽  
Chad Heer ◽  
...  

Self-referencing H+-selective electrodes were used to measure extracellular H+ fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H+-selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H+ flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H+ flux. Barium at 6 mM also increased H+ flux. Potassium-induced extracellular acidifications were abolished when bicarbonate was replaced by 1 mM HEPES. The carbonic anhydrase antagonist benzolamide potentiated the potassium-induced extracellular acidification, while 300 μM DIDS, 300 μM SITS, and 30 μM S0859 significantly reduced the response. Potassium-induced extracellular acidifications persisted in solutions lacking extracellular calcium, although potassium-induced changes in intracellular calcium monitored with Oregon Green were abolished. Exchange of external sodium with choline also eliminated the potassium-induced extracellular acidification. Removal of extracellular sodium by itself induced a transient alkalinization, and replacement of sodium induced a transient acidification, both of which were blocked by 300 μM DIDS. Recordings at the apical portion of the cell showed smaller potassium-induced extracellular H+ fluxes, and removal of the end foot region further decreased the H+ flux, suggesting that the end foot was the major source of acidifications. These studies demonstrate that self-referencing H+-selective electrodes can be used to monitor H+ fluxes from retinal Müller cells in bicarbonate-based solutions and confirm the presence of a sodium-coupled bicarbonate transporter, the activity of which is largely restricted to the end foot of the cell. NEW & NOTEWORTHY The present study uses self-referencing H+-selective electrodes for the first time to measure H+ fluxes from Müller (glial) cells isolated from tiger salamander retina. These studies demonstrate bicarbonate transport as a potent regulator of extracellular levels of acidity around Müller cells and point toward a need for further studies aimed at addressing how such glial cell pH regulatory mechanisms may shape neuronal signaling.


2021 ◽  
Vol 22 (5) ◽  
pp. 2520
Author(s):  
Alba Bellot-Saez ◽  
Rebecca Stevenson ◽  
Orsolya Kékesi ◽  
Evgeniia Samokhina ◽  
Yuval Ben-Abu ◽  
...  

Potassium homeostasis is fundamental for brain function. Therefore, effective removal of excessive K+ from the synaptic cleft during neuronal activity is paramount. Astrocytes play a key role in K+ clearance from the extracellular milieu using various mechanisms, including uptake via Kir channels and the Na+-K+ ATPase, and spatial buffering through the astrocytic gap-junction coupled network. Recently we showed that alterations in the concentrations of extracellular potassium ([K+]o) or impairments of the astrocytic clearance mechanism affect the resonance and oscillatory behavior of both the individual and networks of neurons. These results indicate that astrocytes have the potential to modulate neuronal network activity, however, the cellular effectors that may affect the astrocytic K+ clearance process are still unknown. In this study, we have investigated the impact of neuromodulators, which are known to mediate changes in network oscillatory behavior, on the astrocytic clearance process. Our results suggest that while some neuromodulators (5-HT; NA) might affect astrocytic spatial buffering via gap-junctions, others (DA; Histamine) primarily affect the uptake mechanism via Kir channels. These results suggest that neuromodulators can affect network oscillatory activity through parallel activation of both neurons and astrocytes, establishing a synergistic mechanism to maximize the synchronous network activity.


2001 ◽  
Vol 85 (2) ◽  
pp. 986-994 ◽  
Author(s):  
Yang Li ◽  
Lynne A. Holtzclaw ◽  
James T. Russell

We have measured agonist evoked Ca2+ waves in Müller cells in situ within freshly isolated retinal slices. Using an eye cup dye loading procedure we were able to preferentially fill Müller glial cells in retinal slices with calcium green. Fluorescence microscopy revealed that bath perfusion of slices with purinergic agonists elicits Ca2+ waves in Müller cells, which propagate along their processes. These Ca2+ signals were insensitive to tetrodotoxin (TTX, 1.0 μM) pretreatment. Cells were readily identified as Müller cells by their unique morphology and by subsequent immunocytochemical labeling with glial fibrillary acidic protein antibodies. While cells never exhibited spontaneous Ca2+ oscillations, purinoreceptor agonists, ATP, 2 MeSATP, ADP, 2 MeSADP, and adenosine readily elicited Ca2+ waves. These waves persisted in the absence of [Ca2+]o but were abolished by thapsigargin pretreatment, suggesting that the purinergic agonists tested act by releasing Ca2+ from intracellular Ca2+ stores. The rank order of potency of different purines and pyrimidines for inducing Ca2+ signals was 2 MeSATP = 2MeSADP > ADP > ATP ≫ αβmeATP = uridine triphosphate (UTP) > uridine diphosphate (UDP). The Ca2+signals evoked by ATP, ADP, and 2 MeSATP were inhibited by reactive blue (100 μM) and suramin (200 μM), and the adenosine induced signals were abolished only by 3,7-dimethyl-1-propargylxanthine (200 μM) and not by 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine) or 8-cyclopentyl-1,3-dipropylxanthine at the same concentration. Based on these pharmacological characteristics and the dose-response relationships for ATP, 2 MeSATP, 2 MeSADP, ADP, and adenosine, we concluded that Müller cells express the P1A2 and P2Y1 subtypes of purinoceptors. Analysis of Ca2+ responses showed that, similar to glial cells in culture, wave propagation occurred by regenerative amplification at specialized Ca2+ release sites (wave amplification sites), where the rate of Ca2+ release was significantly enhanced. These data suggest that Müller cells in the retina may participate in signaling, and this may serve as an extra-neuronal signaling pathway.


2004 ◽  
Vol 1 (3) ◽  
pp. 245-252 ◽  
Author(s):  
ERIC A. NEWMAN

Bidirectional signaling between neurons and glial cells has been demonstrated in brain slices and is believed to mediate glial modulation of synaptic transmission in the CNS. Our laboratory has characterized similar neuron–glia signaling in the mammalian retina. We find that light-evoked neuronal activity elicits Ca2+ increases in Müller cells, which are specialized retinal glial cells. Neuron to glia signaling is likely mediated by the release of ATP from neurons and is potentiated by adenosine. Glia to neuron signaling has also been observed and is mediated by several mechanisms. Stimulation of glial cells can result in either facilitation or depression of synaptic transmission. Release of D-serine from Müller cells might also potentiate NMDA receptor transmission. Müller cells directly inhibit ganglion cells by releasing ATP, which, following hydrolysis to adenosine, activates neuronal A1 receptors. The existence of bidirectional signaling mechanisms indicates that glial cells participate in information processing in the retina.


2015 ◽  
Vol 370 (1672) ◽  
pp. 20140195 ◽  
Author(s):  
Eric A. Newman

Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca 2+ -activated K + (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E 2 (PGE 2 ) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells.


2018 ◽  
Vol 13 (10) ◽  
pp. 1741 ◽  
Author(s):  
Miriam Kolko ◽  
Rupali Vohra

1985 ◽  
Vol 85 (6) ◽  
pp. 911-931 ◽  
Author(s):  
E Dick ◽  
R F Miller ◽  
S Bloomfield

Electroretinogram (ERG) and extracellular potassium activity (K+o) measurements were carried out in isolated superfused rabbit eyecup preparations under control conditions and during the application of pharmacological agents that selectively modify the light-responsive retinal network. Light-evoked K+o changes in the rabbit (E-type) retina resemble those previously described in amphibian (I-type) retinas. Different components of the light-evoked K+o changes can be distinguished on the bases of retinal depth, V vs. log I properties, and their responses to pharmacological agents. We find two separable sources of light-evoked increases in extracellular K+: a proximal source and a distal source. The properties of the distal light-evoked K+o increase are consistent with the hypothesis that it initiates a K+-mediated current through Müller cells that is detected as the primary voltage of the electroretinographic b-wave. These experiments also support previous studies indicating that both the corneal-positive component of c-wave and the corneal-negative slow PIII potential result from K+-mediated influences on, respectively, the retinal pigment epithelium and Müller cells.


1981 ◽  
Vol 209 (2) ◽  
pp. 452-457 ◽  
Author(s):  
A.R. Gardner-Medwin ◽  
J.A. Coles ◽  
M. Tsacopoulos

Sign in / Sign up

Export Citation Format

Share Document