scholarly journals Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters

2015 ◽  
Vol 370 (1672) ◽  
pp. 20140195 ◽  
Author(s):  
Eric A. Newman

Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca 2+ -activated K + (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E 2 (PGE 2 ) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells.

2001 ◽  
Vol 85 (2) ◽  
pp. 986-994 ◽  
Author(s):  
Yang Li ◽  
Lynne A. Holtzclaw ◽  
James T. Russell

We have measured agonist evoked Ca2+ waves in Müller cells in situ within freshly isolated retinal slices. Using an eye cup dye loading procedure we were able to preferentially fill Müller glial cells in retinal slices with calcium green. Fluorescence microscopy revealed that bath perfusion of slices with purinergic agonists elicits Ca2+ waves in Müller cells, which propagate along their processes. These Ca2+ signals were insensitive to tetrodotoxin (TTX, 1.0 μM) pretreatment. Cells were readily identified as Müller cells by their unique morphology and by subsequent immunocytochemical labeling with glial fibrillary acidic protein antibodies. While cells never exhibited spontaneous Ca2+ oscillations, purinoreceptor agonists, ATP, 2 MeSATP, ADP, 2 MeSADP, and adenosine readily elicited Ca2+ waves. These waves persisted in the absence of [Ca2+]o but were abolished by thapsigargin pretreatment, suggesting that the purinergic agonists tested act by releasing Ca2+ from intracellular Ca2+ stores. The rank order of potency of different purines and pyrimidines for inducing Ca2+ signals was 2 MeSATP = 2MeSADP > ADP > ATP ≫ αβmeATP = uridine triphosphate (UTP) > uridine diphosphate (UDP). The Ca2+signals evoked by ATP, ADP, and 2 MeSATP were inhibited by reactive blue (100 μM) and suramin (200 μM), and the adenosine induced signals were abolished only by 3,7-dimethyl-1-propargylxanthine (200 μM) and not by 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine) or 8-cyclopentyl-1,3-dipropylxanthine at the same concentration. Based on these pharmacological characteristics and the dose-response relationships for ATP, 2 MeSATP, 2 MeSADP, ADP, and adenosine, we concluded that Müller cells express the P1A2 and P2Y1 subtypes of purinoceptors. Analysis of Ca2+ responses showed that, similar to glial cells in culture, wave propagation occurred by regenerative amplification at specialized Ca2+ release sites (wave amplification sites), where the rate of Ca2+ release was significantly enhanced. These data suggest that Müller cells in the retina may participate in signaling, and this may serve as an extra-neuronal signaling pathway.


2004 ◽  
Vol 1 (3) ◽  
pp. 245-252 ◽  
Author(s):  
ERIC A. NEWMAN

Bidirectional signaling between neurons and glial cells has been demonstrated in brain slices and is believed to mediate glial modulation of synaptic transmission in the CNS. Our laboratory has characterized similar neuron–glia signaling in the mammalian retina. We find that light-evoked neuronal activity elicits Ca2+ increases in Müller cells, which are specialized retinal glial cells. Neuron to glia signaling is likely mediated by the release of ATP from neurons and is potentiated by adenosine. Glia to neuron signaling has also been observed and is mediated by several mechanisms. Stimulation of glial cells can result in either facilitation or depression of synaptic transmission. Release of D-serine from Müller cells might also potentiate NMDA receptor transmission. Müller cells directly inhibit ganglion cells by releasing ATP, which, following hydrolysis to adenosine, activates neuronal A1 receptors. The existence of bidirectional signaling mechanisms indicates that glial cells participate in information processing in the retina.


2020 ◽  
Vol 37 ◽  
Author(s):  
Amy R. Nippert ◽  
Eric A. Newman

Abstract Blood flow in the retina increases in response to light-evoked neuronal activity, ensuring that retinal neurons receive an adequate supply of oxygen and nutrients as metabolic demands vary. This response, termed “functional hyperemia,” is disrupted in diabetic retinopathy. The reduction in functional hyperemia may result in retinal hypoxia and contribute to the development of retinopathy. This review will discuss the neurovascular coupling signaling mechanisms that generate the functional hyperemia response in the retina, the changes to neurovascular coupling that occur in diabetic retinopathy, possible treatments for restoring functional hyperemia and retinal oxygen levels, and changes to functional hyperemia that occur in the diabetic brain.


2013 ◽  
Vol 33 (11) ◽  
pp. 1685-1695 ◽  
Author(s):  
Eric A Newman

The retinal vasculature supplies cells of the inner and middle layers of the retina with oxygen and nutrients. Photic stimulation dilates retinal arterioles producing blood flow increases, a response termed functional hyperemia. Despite recent advances, the neurovascular coupling mechanisms mediating the functional hyperemia response in the retina remain unclear. In this review, the retinal functional hyperemia response is described, and the cellular mechanisms that may mediate the response are assessed. These neurovascular coupling mechanisms include neuronal stimulation of glial cells, leading to the release of vasoactive arachidonic acid metabolites onto blood vessels, release of potassium from glial cells onto vessels, and production and release of nitric oxide (NO), lactate, and adenosine from neurons and glia. The modulation of neurovascular coupling by oxygen and NO are described, and changes in functional hyperemia that occur with aging and in diabetic retinopathy, glaucoma, and other pathologies, are reviewed. Finally, outstanding questions concerning retinal blood flow in health and disease are discussed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260968
Author(s):  
Hannah J. Nonarath ◽  
Alexandria E. Hall ◽  
Gopika SenthilKumar ◽  
Betsy Abroe ◽  
Janis T. Eells ◽  
...  

Diabetic retinopathy (DR), the most common complication of diabetes mellitus, is associated with oxidative stress, nuclear factor-κB (NFκB) activation, and excess production of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). Muller glial cells, spanning the entirety of the retina, are involved in DR inflammation. Mitigation of DR pathology currently occurs via invasive, frequently ineffective therapies which can cause adverse effects. The application of far-red to near-infrared (NIR) light (630-1000nm) reduces oxidative stress and inflammation in vitro and in vivo. Thus, we hypothesize that 670nm light treatment will diminish oxidative stress preventing downstream inflammatory mechanisms associated with DR initiated by Muller cells. In this study, we used an in vitro model system of rat Müller glial cells grown under normal (5 mM) or high (25 mM) glucose conditions and treated with a 670 nm light emitting diode array (LED) (4.5 J/cm2) or no light (sham) daily. We report that a single 670 nm light treatment diminished reactive oxygen species (ROS) production and preserved mitochondrial integrity in this in vitro model of early DR. Furthermore, treatment for 3 days in culture reduced NFκB activity to levels observed in normal glucose and prevented the subsequent increase in ICAM-1. The ability of 670nm light treatment to prevent early molecular changes in this in vitro high glucose model system suggests light treatment could mitigate early deleterious effects modulating inflammatory signaling and diminishing oxidative stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
L Francisco Sanhueza Salas ◽  
Alfredo García-Venzor ◽  
Natalia Beltramone ◽  
Claudia Capurro ◽  
Debra Toiber ◽  
...  

Retinal Müller glial cells (MGs) are among the first to demonstrate metabolic changes during retinal disease and are a potential source of regenerative cells. In response to a harmful stimulus, they can dedifferentiate acquiring neural stem cells properties, proliferate and migrate to the damaged retinal layer and differentiate into lost neurons. However, it is not yet known how this reprogramming process is regulated in mammals. Since glucose and oxygen are important regulatory elements that may help directing stem cell fate, we aimed to study the effect of glucose variations and oxidative stress in Müller cells reprogramming capacity and analyze the participation the histone deacetylase SIRT6, as an epigenetic modulator of this process. We found that the combination of high glucose and oxidative stress induced a decrease in the levels of the marker glutamine synthetase, and an increase in the migration capacity of the cells suggesting that these experimental conditions could induce some degree of dedifferentiation and favor the migration ability. High glucose induced an increase in the levels of the pluripotent factor SOX9 and a decrease in SIRT6 levels accompanied by the increase in the acetylation levels of H3K9. Inhibiting SIRT6 expression by siRNA rendered an increase in SOX9 levels. We also determined SOX9 levels in retinas from mice with a conditional deletion of SIRT6 in the CNS. To further understand the mechanisms that regulate MGs response under metabolic impaired conditions, we evaluated the gene expression profile and performed Gene Ontology enrichment analysis of Müller cells from a murine model of Diabetes. We found several differentially expressed genes and observed that the transcriptomic change involved the enrichment of genes associated with glucose metabolism, cell migration, development and pluripotency. We found that many functional categories affected in cells of diabetic animals were directly related to SIRT6 function. Transcription factors enrichment analysis allowed us to predict several factors, including SOX9, that may be involved in the modulation of the differential expression program observed in diabetic MGs. Our results underline the heterogeneity of Müller cells response and the challenge that the study of metabolic impairment in vivo represents.


2021 ◽  
Vol 15 ◽  
Author(s):  
Robert Paul Malchow ◽  
Boriana K. Tchernookova ◽  
Ji-in Vivien Choi ◽  
Peter J. S. Smith ◽  
Richard H. Kramer ◽  
...  

There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H+ efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain. ATP-elicited alterations in H+ flux from radial glial cells were first detected from Müller cells enzymatically dissociated from the retina of tiger salamander using self-referencing H+-selective microelectrodes. The ATP-elicited alteration in H+ efflux was further found to be highly evolutionarily conserved, extending to Müller cells isolated from species as diverse as lamprey, skate, rat, mouse, monkey and human. More recently, self-referencing H+-selective electrodes have been used to detect ATP-elicited alterations in H+ efflux around individual mammalian astrocytes from the cortex and hippocampus. Tied to increases in intracellular calcium, these ATP-induced extracellular acidifications are well-positioned to be key mediators of synaptic modulation. In this article, we examine the evidence supporting H+ as a key modulator of neurotransmission, review data showing that extracellular ATP elicits an increase in H+ efflux from glial cells, and describe the potential signal transduction pathways involved in glial cell—mediated H+ efflux. We then examine the potential role that extracellular H+ released by glia might play in regulating synaptic transmission within the vertebrate retina, and then expand the focus to discuss potential roles in spreading depression, migraine, epilepsy, and alterations in brain rhythms, and suggest that alterations in extracellular H+ may be a unifying feature linking these disparate phenomena.


Sign in / Sign up

Export Citation Format

Share Document