Modulating adult neurogenesis through dietary interventions

2016 ◽  
Vol 29 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Christine Heberden

AbstractThree areas in the brain continuously generate new neurons throughout life: the subventricular zone lining the lateral ventricles, the dentate gyrus in the hippocampus and the median eminence in the hypothalamus. These areas harbour neural stem cells, which contribute to neural repair by generating daughter cells that then become functional neurons or glia. Impaired neurogenesis leads to detrimental consequences, such as depression, decline of cognitive abilities and obesity. Adult neurogenesis is a versatile process that can be modulated either positively or negatively by many effectors, external or endogenous. Diet can modify neurogenesis both ways, either directly by ways of food-borne molecules, or possibly by the modifications induced on gut microbiota composition. It is therefore critical to define dietary strategies optimal for the maintenance of the stem cell pools.

2021 ◽  
Vol 22 (14) ◽  
pp. 7664
Author(s):  
Katarzyna Bartkowska ◽  
Krzysztof Turlejski ◽  
Beata Tepper ◽  
Leszek Rychlik ◽  
Peter Vogel ◽  
...  

Shrews are small animals found in many different habitats. Like other mammals, adult neurogenesis occurs in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus (DG) of the hippocampal formation. We asked whether the number of new generated cells in shrews depends on their brain size. We examined Crocidura russula and Neomys fodiens, weighing 10–22 g, and Crocidura olivieri and Suncus murinus that weigh three times more. We found that the density of proliferated cells in the SVZ was approximately at the same level in all species. These cells migrated from the SVZ through the rostral migratory stream to the olfactory bulb (OB). In this pathway, a low level of neurogenesis occurred in C. olivieri compared to three other species of shrews. In the DG, the rate of adult neurogenesis was regulated differently. Specifically, the lowest density of newly generated neurons was observed in C. russula, which had a substantial number of new neurons in the OB compared with C. olivieri. We suggest that the number of newly generated neurons in an adult shrew’s brain is independent of the brain size, and molecular mechanisms of neurogenesis appeared to be different in two neurogenic structures.


2014 ◽  
Vol 5 (9) ◽  
pp. e1403-e1403 ◽  
Author(s):  
M Yazdankhah ◽  
S Farioli-Vecchioli ◽  
A B Tonchev ◽  
A Stoykova ◽  
F Cecconi

2021 ◽  
pp. 1-17
Author(s):  
Agata Mulak

Recently, the concept of the brain-gut-microbiota (BGM) axis disturbances in the pathogenesis of Alzheimer’s disease (AD) has been receiving growing attention. At the same time, accumulating data revealing complex interplay between bile acids (BAs), gut microbiota, and host metabolism have shed new light on a potential impact of BAs on the BGM axis. The crosstalk between BAs and gut microbiota is based on reciprocal interactions since microbiota determines BA metabolism, while BAs affect gut microbiota composition. Secondary BAs as microbe-derived neuroactive molecules may affect each of three main routes through which interactions within the BGM axis occur including neural, immune, and neuroendocrine pathways. BAs participate in the regulation of multiple gut-derived molecule release since their receptors are expressed on various cells. The presence of BAs and their receptors in the brain implies a direct effect of BAs on the regulation of neurological functions. Experimental and clinical data confirm that disturbances in BA signaling are present in the course of AD. Disturbed ratio of primary to secondary BAs as well as alterations in BA concertation in serum and brain samples have been reported. An age-related shift in the gut microbiota composition associated with its decreased diversity and stability observed in AD patients may significantly affect BA metabolism and signaling. Given recent evidence on BA neuroprotective and anti-inflammatory effects, new therapeutic targets have been explored including gut microbiota modulation by probiotics and dietary interventions, ursodeoxycholic acid supplementation, and use of BA receptor agonists.


2020 ◽  
Vol 57 (12) ◽  
pp. 5026-5043 ◽  
Author(s):  
Shan Liu ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Kangding Liu ◽  
Hong-Liang Zhang

Abstract Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 973
Author(s):  
Thomas R. Zentall

The humane treatment of animals suggests that they should be housed in an environment that is rich in stimulation and allows for varied activities. However, even if one’s main concern is an accurate assessment of their learning and cognitive abilities, housing them in an enriched environment can have an important effect on the assessment of those abilities. Research has found that the development of the brain of animals is significantly affected by the environment in which they live. Not surprisingly, their ability to learn both simple and complex tasks is affected by even modest time spent in an enriched environment. In particular, animals that are housed in an enriched environment are less impulsive and make more optimal choices than animals housed in isolation. Even the way that they judge the passage of time is affected by their housing conditions. Some researchers have even suggested that exposing animals to an enriched environment can make them more “optimistic” in how they treat ambiguous stimuli. Whether that behavioral effect reflects the subtlety of differences in optimism/pessimism or something simpler, like differences in motivation, incentive, discriminability, or neophobia, it is clear that the conditions of housing can have an important effect on the learning and cognition of animals.


2020 ◽  
Vol 31 (8) ◽  
pp. 803-816
Author(s):  
Umberto di Porzio

AbstractThe environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned “on” and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.


2020 ◽  
Vol 71 (1) ◽  
pp. 149-161 ◽  
Author(s):  
Ilias Attaye ◽  
Sara-Joan Pinto-Sietsma ◽  
Hilde Herrema ◽  
Max Nieuwdorp

Cardiometabolic disease (CMD), such as type 2 diabetes mellitus and cardiovascular disease, contributes significantly to morbidity and mortality on a global scale. The gut microbiota has emerged as a potential target to beneficially modulate CMD risk, possibly via dietary interventions. Dietary interventions have been shown to considerably alter gut microbiota composition and function. Moreover, several diet-derived microbial metabolites are able to modulate human metabolism and thereby alter CMD risk. Dietary interventions that affect gut microbiota composition and function are therefore a promising, novel, and cost-efficient method to reduce CMD risk. Studies suggest that fermentable carbohydrates can beneficially alter gut microbiota composition and function, whereas high animal protein and high fat intake negatively impact gut microbiota function and composition. This review focuses on the role of macronutrients (i.e., carbohydrate, protein, and fat) and dietary patterns (e.g., vegetarian/vegan and Mediterranean diet) in gut microbiota composition and function in the context of CMD.


2009 ◽  
Vol 12 (4) ◽  
pp. 399-408 ◽  
Author(s):  
Li-Chun Cheng ◽  
Erika Pastrana ◽  
Masoud Tavazoie ◽  
Fiona Doetsch

Author(s):  
Josef P. Rauschecker

When one talks about hearing, some may first imagine the auricle (or external ear), which is the only visible part of the auditory system in humans and other mammals. Its shape and size vary among people, but it does not tell us much about a person’s abilities to hear (except perhaps their ability to localize sounds in space, where the shape of the auricle plays a certain role). Most of what is used for hearing is inside the head, particularly in the brain. The inner ear transforms mechanical vibrations into electrical signals; then the auditory nerve sends these signals into the brainstem, where intricate preprocessing occurs. Although auditory brainstem mechanisms are an important part of central auditory processing, it is the processing taking place in the cerebral cortex (with the thalamus as the mediator), which enables auditory perception and cognition. Human speech and the appreciation of music can hardly be imagined without a complex cortical network of specialized regions, each contributing different aspects of auditory cognitive abilities. During the evolution of these abilities in higher vertebrates, especially birds and mammals, the cortex played a crucial role, so a great deal of what is referred to as central auditory processing happens there. Whether it is the recognition of one’s mother’s voice, listening to Pavarotti singing or Yo-Yo Ma playing the cello, hearing or reading Shakespeare’s sonnets, it will evoke electrical vibrations in the auditory cortex, but it does not end there. Large parts of frontal and parietal cortex receive auditory signals originating in auditory cortex, forming processing streams for auditory object recognition and auditory-motor control, before being channeled into other parts of the brain for comprehension and enjoyment.


Sign in / Sign up

Export Citation Format

Share Document