Methanol, pectin and pectinesterase changes during soybean seed maturation

1999 ◽  
Vol 9 (4) ◽  
pp. 311-320 ◽  
Author(s):  
James L. Koch ◽  
Marcin Horbowicz ◽  
Ralph L. Obendorf

AbstractMethanol accumulates in maturing seeds, correlating with preharvest deterioration. Since the source of methanol may be from pectin de-methylation, methanol, cell wall uronic acid, pectin methyl esterification, pectinesterase (PE; EC 3.1.1.11) activity, and neutral sugar composition and partitioning of cell wall polysaccharides were determined during soybean (Glycine max[L.] Merrill) seed development, maturation, and desiccationin planta. Axis cell wall polysaccharides were more easily solubilized, richer in uronic acid, rhamnose, and xylose, and less rich in galactose than cotyledon cell wall polysaccharides. Methanol accumulated to 9.7 μg per two cotyledons and 0.5 μg per axis; total methanol decreased to 3 μg per two cotyledons during loss of green color. Total uronic acid increased from 0.12 to 0.27 mg per axis and 0.9 to 4 mg per cotyledon between 24 and 50 days after flowering (DAF). After loss of green color, pectin methyl esterification in axes increased from 7 to 24 mole% between 50 and 60 DAF but decreased to 14 mole%by 62 DAF in latter stages of seed desiccation. In cotyledons, methyl esterification ranged from 25 to 40 mole% and was 31 mole% after desiccation. PE activity increased 100 fold in axes, including a 30-fold increase in activity after loss of green color at 46 DAF. Cotyledon PE activity was 40-fold higher than in axes at 24 DAF, declined 75% by 56 DAF, and then increased 5 fold during desiccation. Pectin methyl de-esterification by PE is sufficient to be the sole source for methanol accumulation in seed tissues during development and maturation.

Crop Science ◽  
2003 ◽  
Vol 43 (2) ◽  
pp. 571 ◽  
Author(s):  
S. K. Stombaugh ◽  
J. H. Orf ◽  
H. G. Jung ◽  
D. A. Somers

2011 ◽  
Vol 83 (3) ◽  
pp. 1134-1138 ◽  
Author(s):  
Carolina Ramírez-Truque ◽  
Patricia Esquivel ◽  
Reinhold Carle

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 786B-786
Author(s):  
Guiwen W. Cheng ◽  
Donald J. Huber

Softening and liquefaction of `Solar Set' locules was studied by examining cell wall polysaccharides during fruit developmental stages (FDS) of immature green, mature green and breaker. Ethanol insoluble solids (EIS) were sequentially extracted by H2O, CDTA, and Na2CO3 solutions. The chromatograms of gel filtration among the same-solution extracts of EISs from three FDS were similar. Gradient DEAE also yielded similar patterns among FDS in each extraction solvent, even though the patterns of Na2CO3 extracts differed from those of H2O and CDTA extracts. The mole ratio of total polyuronides decreased for Gal, Ara, and Xyl at later FDS in both EIS and in all extracted polymers. Gal had the highest mole percentage of total neutral sugars, followed by Ara, Xyl, and Rha. While the mole percentage of neutral sugars for Gal, Rha, Ara, and Xyl were relatively similar among FDS in H2O extracts, those in CDTA and Na2CO3 extracts either increased or decreased, depending on individual neutral sugar. SDS-PAGE showed increased density in locule-tissue proteins, especially one with a molecular weight of less than 20 kDa, during later FDS. Results indicate that pectin depolymerization was limited and major neutral sugars commonly composing side chains showed a net decrease.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 468d-468
Author(s):  
L.D. Melton ◽  
L.M. Davies

Cell wall changes during ripening have a major effect on fruit texture. The cell walls isolated using phenol-Tris buffer were sequentially extracted to give polysaccharide fractions that contained mainly water-soluble pectin, chelator-soluble (CDTA) pectin, hemicelluloses (0.05 M Na2CO3 followed by 1M and 4M KOH) and cellulose. The fractions were analyzed colorimetrically for uronic acid, total neutral sugar and cellulose contents. The component sugars of each fraction were determined as their alditol acetates by GC. Then was a decrease in the two pectin fractions during ripening. The pectins appear to have arabinan and galactan side chains. Pectic galactose decreases during ripening. The weight of the combined hemicellulose fractions did not change during ripening, nor did the cellulose level. At least two types of arabinan are present. Pectins were found in all cell wall fractions. Nashi cell walls contain a relatively large amount of xylan compared to other fruit.


Crop Science ◽  
2004 ◽  
Vol 44 (6) ◽  
pp. 2101-2106 ◽  
Author(s):  
S. K. Stombaugh ◽  
J. H. Orf ◽  
H. G. Jung ◽  
K. Chase ◽  
K. G. Lark ◽  
...  

2021 ◽  
Author(s):  
Louise Emma Crozier ◽  
Jacqueline Marshall ◽  
Ashleigh Holmes ◽  
Kathryn Wright ◽  
Yannick Rossez ◽  
...  

Arabinose is a major plant aldopentose in the form of arabinans complexed in cell wall polysaccharides or glycoproteins (AGP), but comparatively rare as a monosaccharide. L-arabinose is an important bacterial metabolite, accessed by pectolytic microorganisms such as Pectobacterium atrosepticum via pectin and hemicellulose degrading enzymes. However, not all plant-associated microbes encode cell wall degrading enzymes, yet can metabolise L-arabinose, raising questions about their use of and access to the glycan in plants. Therefore, we examined L-arabinose metabolism in the food-borne pathogen Escherichia coli O157:H7 (isolate Sakai) during its colonisation of plants. L-arabinose metabolism (araBA) and transport (araF) genes were activated at 18 C in vitro by L-arabinose and expressed over prolonged periods in planta. Although deletion of araBAD did not impact the colonisation ability of E. coli O157:H7 (Sakai) on plants, araA was induced on exposure to spinach cell wall polysaccharides. Furthermore, debranched and arabinan oligosaccharides induced ara metabolism gene expression in vitro, and stimulated modest proliferation, while immobilised pectin did not. Thus, E. coli O157:H7 (Sakai) can utilise pectin/AGP-derived L-arabinose as a metabolite, but differs fundamentally in ara gene organisation, transport and regulation from the related pectinolytic species P. atrosepticum, reflective of distinct plant-associated lifestyles.


Crop Science ◽  
2000 ◽  
Vol 40 (2) ◽  
pp. 408-412 ◽  
Author(s):  
S.K. Stombaugh ◽  
H.G. Jung ◽  
J.H. Orf ◽  
D.A. Somers

2002 ◽  
Author(s):  
Nicholas C. Carpita ◽  
Ruth Ben-Arie ◽  
Amnon Lers

Our study was designed to elucidate the chemical determinants of pectin cross-linking in developing fruits of apple and peach and to evaluate the role of breakage cross-linkages in swelling, softening, and cell separation during the ripening. Peaches cell walls soften and swell considerably during the ripening, whereas apples fruit cells maintain wall firmness but cells separate during late stages of ripening. We used a "double-reduction" technique to show that levels of non-methyl esters of polyuronic acid molecules were constant during the development and ripening and decreased only in overripe fruit. In peach, methyl and non-methyl esters increased during the development and decreased markedly during the ripening. Non-methyl ester linkages in both fruit decreased accompanied fruit softening. The identity of the second component of the linkage and its definitive role in the fruit softening remain elusive. In preliminary examination of isolated apples cell walls, we found that phenolic compounds accumulate early in wall development but decrease markedly during ripening. Quantitative texture analysis was used to correlate with changes to wall chemistry from the fresh-picked ripe stage to the stage during storage when the cell separation occurs. Cell wall composition is similar in all cultivars, with arabinose as the principal neutral sugar. Extensive de-branching of these highly branched arabinans pre-stages softening and cell-cell separation during over-ripening of apple. The longer 5-arabinans remain attached to the major pectic polymer rhamnogalacturonan I (RG I) backbone. The degree of RG I branching, as judged from the ratios of 2-Rha:2,4-Rha, also decreases, specially after an extensive arabinan de-branching. Loss of the 4-Rham linkages correlated strongly with the softening of the fruit. Loss of the monomer or polymer linked to the RG I produce directly or indirectly the softening of the fruit. This result will help to understand the fruit softening and to have better control of the textural changes in fruit during the ripening and especially during the storage. 'Wooliness', an undesirable mealy texture that is induced during chilling of some peach cultivars, greatly reduces the fruit storage possibilities. In order to examine the hypothesis that the basis for this disorder is related to abnormality in the cell wall softening process we have carried out a comparative analysis using the resistant cultivar, Sunsnow, and a sensitive one, Hermosa. We investigated the activity of several pectin- and glycan-modifying enzymes and the expression of their genes during ripening, chilling, and subsequent shelf-life. The changes in carbohydrate status and in methyl vs. non-methyl uronate ester levels in the walls of these cultivars were examined as well to provide a basis for comparison of the relevant gene expression that may impact appearance of the wooly character. The activities of the specific polygalacturonase (PGase) and a CMC-cellulase activities are significantly elevated in walls of peaches that have become wooly. Cellulase activities correlated well with increased level of the transcript, but differential expression of PGase did not correspond with the observed pattern of mRNA accumulation. When expression of ethylene biosynthesis related genes was followed no significant differences in ACC synthase gene expression was observed in the wooly fruit while the normal activation of the ACC oxidase was partially repressed in the Hermosa wooly fruits. Normal ripening-related loss of the uronic acid-rich polymers was stalled in the wooly Hermosa inconsistent with the observed elevation in a specific PGase activity but consistent with PG gene expression. In general, analysis of the level of total esterification, degree of methyl esterification and level of non-methyl esters did not reveal any major alterations between the different fruit varieties or between normal and abnormal ripening. Some decrease in the level of uronic acids methyl esterification was observed for both Hermosa and Sunsnow undergoing ripening following storage at low temperature but not in fruits ripening after harvest. Our results support a role for imbalanced cell wall degradation as a basis for the chilling disorder. While these results do not support a role for the imbalance between PG and pectin methyl esterase (PME) activities as the basis for the disorder they suggest a possible role for imbalance between cellulose and other cell wall polymer degradation during the softening process.


Sign in / Sign up

Export Citation Format

Share Document