scholarly journals The Equivalence of Two Graph Polynomials and a Symmetric Function

2009 ◽  
Vol 18 (4) ◽  
pp. 601-615 ◽  
Author(s):  
CRIEL MERINO ◽  
STEVEN D. NOBLE

The U-polynomial, the polychromate and the symmetric function generalization of the Tutte polynomial, due to Stanley, are known to be equivalent in the sense that the coefficients of any one of them can be obtained as a function of the coefficients of any other. The definition of each of these functions suggests a natural way in which to strengthen them, which also captures Tutte's universal V-function as a specialization. We show that the equivalence remains true for the strong functions, thus answering a question raised by Dominic Welsh.

2020 ◽  
Vol 29 (03) ◽  
pp. 2050004
Author(s):  
Hery Randriamaro

The Tutte polynomial is originally a bivariate polynomial which enumerates the colorings of a graph and of its dual graph. Ardila extended in 2007 the definition of the Tutte polynomial on the real hyperplane arrangements. He particularly computed the Tutte polynomials of the hyperplane arrangements associated to the classical Weyl groups. Those associated to the exceptional Weyl groups were computed by De Concini and Procesi one year later. This paper has two objectives: On the one side, we extend the Tutte polynomial computing to the complex hyperplane arrangements. On the other side, we introduce a wider class of hyperplane arrangements which is that of the symmetric hyperplane arrangements. Computing the Tutte polynomial of a symmetric hyperplane arrangement permits us to deduce the Tutte polynomials of some hyperplane arrangements, particularly of those associated to the imprimitive reflection groups.


10.37236/2072 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Martin Trinks

Motivated by the definition of the edge elimination polynomial of a graph we define the covered components polynomial counting spanning subgraphs with respect to their number of components, edges and covered components. We prove a recurrence relation, which shows that both graph polynomials are substitution instances of each other. We give some properties of the covered components polynomial and some results concerning relations to other graph polynomials.


2019 ◽  
Vol 18 (09) ◽  
pp. 1950172 ◽  
Author(s):  
Nafaa Chbili

In a recent paper, we studied the interaction between the automorphism group of a graph and its Tutte polynomial. More precisely, we proved that certain symmetries of graphs are clearly reflected by their Tutte polynomials. The purpose of this paper is to extend this study to other graph polynomials. In particular, we prove that if a graph [Formula: see text] has a symmetry of prime order [Formula: see text], then its characteristic polynomial, with coefficients in the finite field [Formula: see text], is determined by the characteristic polynomial of its quotient graph [Formula: see text]. Similar results are also proved for some generalization of the Tutte polynomial.


2021 ◽  
pp. 7-16
Author(s):  
Adrian Tanasa

In this chapter we present some notions of graph theory that will be useful in the rest of the book. It is worth emphasizing that graph theorists and theoretical physicists adopt, unfortunately, different terminologies. We present here both terminologies, such that a sort of dictionary between these two communities can be established. We then extend the notion of graph to that of maps (or of ribbon graphs). Moreover, graph polynomials encoding these structures (the Tutte polynomial for graphs and the Bollobás–Riordan polynomial for ribbon graphs) are presented.


1975 ◽  
Vol 19 (4) ◽  
pp. 345-352 ◽  
Author(s):  
Michael Holcombe

Let be a category with finite products and a final object and let X be any group object in . The set of -morphisms, (X, X) is, in a natural way, a near-ring which we call the endomorphism near-ring of X in Such nearrings have previously been studied in the case where is the category of pointed sets and mappings, (6). Generally speaking, if Γ is an additive group and S is a semigroup of endomorphisms of Γ then a near-ring can be generated naturally by taking all zero preserving mappings of Γ into itself which commute with S (see 1). This type of near-ring is again an endomorphism near-ring, only the category is the category of S-acts and S-morphisms (see (4) for definition of S-act, etc.).


1990 ◽  
Vol 3 (1) ◽  
pp. 27-55 ◽  
Author(s):  
Efim Khalimsky ◽  
Ralph Kopperman ◽  
Paul R. Meyer

The importance of topological connectedness properties in processing digital pictures is well known. A natural way to begin a theory for this is to give a definition of connectedness for subsets of a digital plane which allows one to prove a Jordan curve theorem. The generally accepted approach to this has been a non-topological Jordan curve theorem which requires two different definitions, 4-connectedness, and 8-connectedness, one for the curve and the other for its complement.In [KKM] we introduced a purely topological context for a digital plane and proved a Jordan curve theorem. The present paper gives a topological proof of the non-topological Jordan curve theorem mentioned above and extends our previous work by considering some questions associated with image processing:How do more complicated curves separate the digital plane into connected sets? Conversely given a partition of the digital plane into connected sets, what are the boundaries like and how can we recover them? Our construction gives a unified answer to these questions.The crucial step in making our approach topological is to utilize a natural connected topology on a finite, totally ordered set; the topologies on the digital spaces are then just the associated product topologies. Furthermore, this permits us to define path, arc, and curve as certain continuous functions on such a parameter interval.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950006 ◽  
Author(s):  
Valeriano Aiello ◽  
Roberto Conti

In a recent paper, Jones introduced a correspondence between elements of the Thompson group [Formula: see text] and certain graphs/links. It follows from his work that several polynomial invariants of links, such as the Kauffman bracket, can be reinterpreted as coefficients of certain unitary representations of [Formula: see text]. We give a somewhat different and elementary proof of this fact for the Kauffman bracket evaluated at certain roots of unity by means of a statistical mechanics model interpretation. Moreover, by similar methods we show that, for some particular specializations of the variables, other familiar link invariants and graph polynomials, namely the number of [Formula: see text]-colorings and the Tutte polynomial, can be viewed as positive definite functions on [Formula: see text].


2019 ◽  
Vol 7 ◽  
Author(s):  
SPENCER BACKMAN ◽  
MATTHEW BAKER ◽  
CHI HO YUEN

Let $M$ be a regular matroid. The Jacobian group $\text{Jac}(M)$ of $M$ is a finite abelian group whose cardinality is equal to the number of bases of $M$ . This group generalizes the definition of the Jacobian group (also known as the critical group or sandpile group) $\operatorname{Jac}(G)$ of a graph $G$ (in which case bases of the corresponding regular matroid are spanning trees of $G$ ). There are many explicit combinatorial bijections in the literature between the Jacobian group of a graph $\text{Jac}(G)$ and spanning trees. However, most of the known bijections use vertices of $G$ in some essential way and are inherently ‘nonmatroidal’. In this paper, we construct a family of explicit and easy-to-describe bijections between the Jacobian group of a regular matroid $M$ and bases of $M$ , many instances of which are new even in the case of graphs. We first describe our family of bijections in a purely combinatorial way in terms of orientations; more specifically, we prove that the Jacobian group of $M$ admits a canonical simply transitive action on the set ${\mathcal{G}}(M)$ of circuit–cocircuit reversal classes of $M$ , and then define a family of combinatorial bijections $\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ between ${\mathcal{G}}(M)$ and bases of $M$ . (Here $\unicode[STIX]{x1D70E}$ (respectively $\unicode[STIX]{x1D70E}^{\ast }$ ) is an acyclic signature of the set of circuits (respectively cocircuits) of $M$ .) We then give a geometric interpretation of each such map $\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$ in terms of zonotopal subdivisions which is used to verify that $\unicode[STIX]{x1D6FD}$ is indeed a bijection. Finally, we give a combinatorial interpretation of lattice points in the zonotope $Z$ ; by passing to dilations we obtain a new derivation of Stanley’s formula linking the Ehrhart polynomial of $Z$ to the Tutte polynomial of $M$ .


2009 ◽  
Vol 11 (02) ◽  
pp. 201-264 ◽  
Author(s):  
ULRICH OERTEL ◽  
JACEK ŚWIATKOWSKI

We propose in this paper a method for studying contact structures in 3-manifolds by means of branched surfaces. We explain what it means for a contact structure to be carried by a branched surface embedded in a 3-manifold. To make the transition from contact structures to branched surfaces, we first define auxiliary objects called σ-confoliations and pure contaminations, both generalizing contact structures. We study various deformations of these objects and show that the σ-confoliations and pure contaminations obtained by suitably modifying a contact structure remember the contact structure up to isotopy. After defining tightness for all pure contaminations in a natural way, generalizing the definition of tightness for contact structures, we obtain some conditions on (the embedding of) a branched surface in a 3-manifold sufficient to guarantee that any pure contamination carried by the branched surface is tight. We also find conditions sufficient to prove that a branched surface carries only overtwisted (non-tight) contact structures. Our long-term goal in developing these methods is twofold: Not only do we want to study tight contact structures and pure contaminations, but we also wish to use them as tools for studying 3-manifold topology.


2018 ◽  
Vol 15 (08) ◽  
pp. 1830003 ◽  
Author(s):  
Víctor Manuel Jiménez ◽  
Manuel de León ◽  
Marcelo Epstein

A Lie groupoid, called second-order non-holonomic material Lie groupoid, is associated in a natural way to any Cosserat medium. This groupoid is used to give a new definition of homogeneity which does not depend on a material archetype. The corresponding Lie algebroid, called second-order non-holonomic material Lie algebroid, is used to characterize the homogeneity property of the material. We also relate these results with the previously obtained ones in terms of non-holonomic second-order [Formula: see text]-structures.


Sign in / Sign up

Export Citation Format

Share Document