scholarly journals Largest Components in Random Hypergraphs

2018 ◽  
Vol 27 (5) ◽  
pp. 741-762 ◽  
Author(s):  
OLIVER COOLEY ◽  
MIHYUN KANG ◽  
YURY PERSON

In this paper we considerj-tuple-connected components in randomk-uniform hypergraphs (thej-tuple-connectedness relation can be defined by letting twoj-sets be connected if they lie in a common edge and considering the transitive closure; the casej= 1 corresponds to the common notion of vertex-connectedness). We show that the existence of aj-tuple-connected component containing Θ(nj)j-sets undergoes a phase transition and show that the threshold occurs at edge probability$$\frac{(k-j)!}{\binom{k}{j}-1}n^{j-k}.$$Our proof extends the recent short proof for the graph case by Krivelevich and Sudakov, which makes use of a depth-first search to reveal the edges of a random graph.Our main original contribution is abounded degree lemma, which controls the structure of the component grown in the search process.

10.37236/5064 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider the following definition of connectedness in $k$-uniform hypergraphs: two $j$-sets (sets of $j$ vertices) are $j$-connected if there is a walk of edges between them such that two consecutive edges intersect in at least $j$ vertices. The hypergraph is $j$-connected if all $j$-sets are pairwise $j$-connected. We determine the threshold at which the random $k$-uniform hypergraph with edge probability $p$ becomes $j$-connected with high probability. We also deduce a hitting time result for the random hypergraph process – the hypergraph becomes $j$-connected at exactly the moment when the last isolated $j$-set disappears. This generalises the classical hitting time result of Bollobás and Thomason for graphs.


10.37236/7712 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider connected components in $k$-uniform hypergraphs for the following notion of connectedness: given integers $k\ge 2$ and $1\le j \le k-1$, two $j$-sets (of vertices) lie in the same $j$-component if there is a sequence of edges from one to the other such that consecutive edges intersect in at least $j$ vertices.We prove that certain collections of $j$-sets constructed during a breadth-first search process on $j$-components in a random $k$-uniform hypergraph are reasonably regularly distributed with high probability. We use this property to provide a short proof of the asymptotic size of the giant $j$-component shortly after it appears.


Author(s):  
Peter Allen ◽  
Christoph Koch ◽  
Olaf Parczyk ◽  
Yury Person

Abstract In an r-uniform hypergraph on n vertices, a tight Hamilton cycle consists of n edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of r vertices. We provide a first deterministic polynomial-time algorithm, which finds a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least C log3n/n. Our result partially answers a question of Dudek and Frieze, who proved that tight Hamilton cycles exist already for p = ω(1/n) for r = 3 and p = (e + o(1))/n for $r \ge 4$ using a second moment argument. Moreover our algorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person, and Nenadov and Škorić, in various ways: the algorithm of Allen et al. is a randomized polynomial-time algorithm working for edge probabilities $p \ge {n^{ - 1 + \varepsilon}}$ , while the algorithm of Nenadov and Škorić is a randomized quasipolynomial-time algorithm working for edge probabilities $p \ge C\mathop {\log }\nolimits^8 n/n$ .


2017 ◽  
Vol 27 (2) ◽  
pp. 245-273 ◽  
Author(s):  
ANDREY KUPAVSKII ◽  
DMITRY SHABANOV

This paper deals with a combinatorial problem concerning colourings of uniform hypergraphs with large girth. We prove that ifHis ann-uniform non-r-colourable simple hypergraph then its maximum edge degree Δ(H) satisfies the inequality$$ \Delta(H)\geqslant c\cdot r^{n-1}\ffrac{n(\ln\ln n)^2}{\ln n} $$for some absolute constantc> 0.As an application of our probabilistic technique we establish a lower bound for the classical van der Waerden numberW(n, r), the minimum naturalNsuch that in an arbitrary colouring of the set of integers {1,. . .,N} withrcolours there exists a monochromatic arithmetic progression of lengthn. We prove that$$ W(n,r)\geqslant c\cdot r^{n-1}\ffrac{(\ln\ln n)^2}{\ln n}. $$


2017 ◽  
Vol 26 (3) ◽  
pp. 406-422
Author(s):  
MARCELO M. GAUY ◽  
HIÊP HÀN ◽  
IGOR C. OLIVEIRA

We investigate the asymptotic version of the Erdős–Ko–Rado theorem for the random k-uniform hypergraph $\mathcal{H}$k(n, p). For 2⩽k(n) ⩽ n/2, let $N=\binom{n}k$ and $D=\binom{n-k}k$. We show that with probability tending to 1 as n → ∞, the largest intersecting subhypergraph of $\mathcal{H}$ has size $$(1+o(1))p\ffrac kn N$$ for any $$p\gg \ffrac nk\ln^2\biggl(\ffrac nk\biggr)D^{-1}.$$ This lower bound on p is asymptotically best possible for k = Θ(n). For this range of k and p, we are able to show stability as well.A different behaviour occurs when k = o(n). In this case, the lower bound on p is almost optimal. Further, for the small interval D−1 ≪ p ⩽ (n/k)1−ϵD−1, the largest intersecting subhypergraph of $\mathcal{H}$k(n, p) has size Θ(ln(pD)ND−1), provided that $k \gg \sqrt{n \ln n}$.Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in $\mathcal{H}$k, for essentially all values of p and k.


2018 ◽  
Vol 27 (6) ◽  
pp. 974-987
Author(s):  
DHRUV MUBAYI ◽  
LUJIA WANG

A sunflower is a collection of distinct sets such that the intersection of any two of them is the same as the common intersectionCof all of them, and |C| is smaller than each of the sets. A longstanding conjecture due to Erdős and Szemerédi (solved recently in [7, 9]; see also [22]) was that the maximum size of a family of subsets of [n] that contains no sunflower of fixed sizek> 2 is exponentially smaller than 2nasn→ ∞. We consider the problems of determining the maximum sum and product ofkfamilies of subsets of [n] that contain no sunflower of sizekwith one set from each family. For the sum, we prove that the maximum is$$(k-1)2^n+1+\sum_{s=0}^{k-2}\binom{n}{s}$$for alln⩾k⩾ 3, and for thek= 3 case of the product, we prove that the maximum is$$\biggl(\ffrac{1}{8}+o(1)\biggr)2^{3n}.$$We conjecture that for all fixedk⩾ 3, the maximum product is (1/8+o(1))2kn.


2014 ◽  
Vol 24 (1) ◽  
pp. 195-215
Author(s):  
JEFFREY GAITHER ◽  
GUY LOUCHARD ◽  
STEPHAN WAGNER ◽  
MARK DANIEL WARD

We analyse the first-order asymptotic growth of \[ a_{n}=\int_{0}^{1}\prod_{j=1}^{n}4\sin^{2}(\pi jx)\, dx. \] The integer an appears as the main term in a weighted average of the number of orbits in a particular quasihyperbolic automorphism of a 2n-torus, which has applications to ergodic and analytic number theory. The combinatorial structure of an is also of interest, as the ‘signed’ number of ways in which 0 can be represented as the sum of ϵjj for −n ≤ j ≤ n (with j ≠ 0), with ϵj ∈ {0, 1}. Our result answers a question of Thomas Ward (no relation to the fourth author) and confirms a conjecture of Robert Israel and Steven Finch.


2016 ◽  
Vol 59 (3) ◽  
pp. 533-547 ◽  
Author(s):  
ADAM OSȨKOWSKI

AbstractLet $\mathcal{M}$ and G denote, respectively, the maximal operator and the geometric maximal operator associated with the dyadic lattice on $\mathbb{R}^d$. (i)We prove that for any 0 < p < ∞, any weight w on $\mathbb{R}^d$ and any measurable f on $\mathbb{R}^d$, we have Fefferman–Stein-type estimate $$\begin{equation*} ||G(f)||_{L^p(w)}\leq e^{1/p}||f||_{L^p(\mathcal{M}w)}. \end{equation*} $$ For each p, the constant e1/p is the best possible.(ii)We show that for any weight w on $\mathbb{R}^d$ and any measurable f on $\mathbb{R}^d$, $$\begin{equation*} \int_{\mathbb{R}^d} G(f)^{1/\mathcal{M}w}w\mbox{d}x\leq e\int_{\mathbb{R}^d} |f|^{1/w}w\mbox{d}x \end{equation*} $$ and prove that the constant e is optimal. Actually, we establish the above estimates in a more general setting of maximal operators on probability spaces equipped with a tree-like structure.


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


2015 ◽  
Vol 25 (6) ◽  
pp. 870-908 ◽  
Author(s):  
NIKOLAOS FOUNTOULAKIS ◽  
MEGHA KHOSLA ◽  
KONSTANTINOS PANAGIOTOU

Ak-uniform hypergraphH= (V, E) is called ℓ-orientable if there is an assignment of each edgee∈Eto one of its verticesv∈esuch that no vertex is assigned more than ℓ edges. LetHn,m,kbe a hypergraph, drawn uniformly at random from the set of allk-uniform hypergraphs withnvertices andmedges. In this paper we establish the threshold for the ℓ-orientability ofHn,m,kfor allk⩾ 3 and ℓ ⩾ 2, that is, we determine a critical quantityc*k,ℓsuch that with probability 1 −o(1) the graphHn,cn,khas an ℓ-orientation ifc<c*k,ℓ, but fails to do so ifc>c*k,ℓ.Our result has various applications, including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.


Sign in / Sign up

Export Citation Format

Share Document