Ion channels from the mouse sperm plasma membrane in planar lipid bilayers

Zygote ◽  
1995 ◽  
Vol 3 (3) ◽  
pp. 199-206 ◽  
Author(s):  
Pedro Labarca ◽  
Otilia Zapata ◽  
Carmen Beltrán ◽  
Alberto Darszon

SummaryFusion of purified mouse sperm plasma membranes to planar lipid bilayers resulted in the insertion of three ion channel types. They could be discerned on the basis of their selectivity, conductance, gating and voltage-dependent properties. The presence of a previously reported large, Ca2+-selective channel was confirmed. Here, it is reported that the Ca21-selective channel from mouse sperm plasmamembrane displayed a pNa+/Pk+ = 1.6 ± 0.2(n=4) and was blocked by micromolar concentrations of ruthenium red. Fusion yielded also a cation-selective channel (PNa+/Pk+ = 2.5±0.3, n=3) with a main open conductance substate of 103 pS and a smaller open substate of 51 PS(600mM K+cis/100 mM Na+trans). The channel inserted into bilayers in two stable fashions: a high-activity mode (open probability = 0.57 ± 0.02, n=3), and a low activity mode (open probability <1%, n=4). In high mode, the channel displayed bursting kinetics and burst length was voltage independent. In addition, a perfectly anion-selective channel, with a slope conductance of 83 PS (600KCI cis/100KCI trans), was identified. It displayed a high, nearly constant open probability (∼0.90)in the 0 to –80 mV range.

1987 ◽  
Vol 253 (3) ◽  
pp. C364-C368 ◽  
Author(s):  
E. Rousseau ◽  
J. S. Smith ◽  
G. Meissner

Ryanodine affects excitation-contraction coupling in skeletal and cardiac muscle by specifically interacting with the sarcoplasmic reticulum (SR) Ca2+ release channel. The effect of the drug at the single channel level was studied by incorporating skeletal and cardiac SR vesicles into planar lipid bilayers. The two channels were activated by micromolar free Ca2+ and millimolar ATP and inhibited by Mg2+ and ruthenium red. Addition of micromolar concentrations of ryanodine decreased about twofold the unit conductance of the Ca2+- and ATP-activated skeletal and cardiac channels. A second effect of ryanodine was to increase the open probability (Po) of the channels in such a way that Po was close to unity under a variety of activating and inactivating conditions. The effects of ryanodine were long lasting in that removal of ryanodine by perfusion did not return the channels into their fully conducting state.


1997 ◽  
Vol 273 (2) ◽  
pp. H796-H804 ◽  
Author(s):  
C. Valdivia ◽  
J. O. Hegge ◽  
R. D. Lasley ◽  
H. H. Valdivia ◽  
R. Mentzer

We investigated the effects of myocardial stunning on the function of the two main Ca2+ transport proteins of the sarcoplasmic reticulum (SR), the Ca(2+)-adenosinetriphosphatase and the Ca(2+)-release channel or ryanodine receptor. Regional myocardial stunning was induced in open-chest pigs (n = 6) by a 10-min occlusion of the left anterior descending coronary artery (LAD) and 2 h reperfusion. SR vesicles isolated from the LAD-perfused region (stunned) and the normal left circumflex coronary artery (LC)-perfused region were used to assess the oxalate-supported 45Ca2+ uptake, [3H]ryanodine binding, and single-channel recordings of ryanodine-sensitive Ca(2+)-release channels in planar lipid bilayers. Myocardial stunning decreased LAD systolic wall thickening to 20% of preischemic values. The rate of SR 45Ca2+ uptake in the stunned LAD bed was reduced by 37% compared with that of the normal LC bed (P < 0.05). Stunning was also associated with a 38% reduction in the maximal density of high-affinity [3H]ryanodine binding sites (P < 0.05 vs. normal LC) but had no effect on the dissociation constant. The open probability of ryanodine-sensitive Ca(2+)-release channels determined by single channel recordings in planar lipid bilayers was 26 +/- 2% for control SR (n = 33 channels from 3 animals) and 14 +/- 2% for stunned SR (n = 21 channels; P < 0.05). This depressed activity of SR function observed in postischemic myocardium could be one of the mechanisms underlying myocardial stunning.


1994 ◽  
Vol 266 (3) ◽  
pp. C870-C875 ◽  
Author(s):  
A. M. Sherry ◽  
J. Cuppoletti ◽  
D. H. Malinowska

Cystic fibrosis transmembrane conductance regulator (CFTR) is present in acidic intracellular vesicles. Human normal and delta F508 CFTR Cl- channel characteristics at pH 7.4 and pH 4.5 were determined by fusing Xenopus laevis oocyte plasma membranes containing the expressed channels to planar lipid bilayers. At pH 7.4, both channels exhibited linear current-voltage curves, a 10 +/- 0.3-pS conductance using 800 mM CsCl, and a 9:1 Cl-/Cs+ discrimination ratio obtained from a 32 +/- 2 mV reversal potential with a fivefold gradient. At -80 mV, the open probability (Po) of mutant CFTR was 53% that of normal CFTR. Reduction of the trans-pH from 7.4 to 4.5 had no effect on the above characteristics except for Po, where it caused a 47% reduction in normal CFTR Po (due to a 75% decrease in mean open time) and a 75% reduction in delta F508 CFTR Po (due to a 6-fold increase in mean closed time). Normal CFTR can thus function in the environment of acidic intracellular organelles, whereas activity of mutant CFTR would be greatly reduced. These results may be of significance to understanding the cystic fibrosis defect.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1127
Author(s):  
Yan Li ◽  
Jin Bai ◽  
Yi-hua Yang ◽  
Naoto Hoshi ◽  
Dong-bao Chen

Opening of large conductance calcium-activated and voltage-dependent potassium (BKCa) channels hyperpolarizes plasma membranes of smooth muscle (SM) to cause vasodilation, underling a key mechanism for mediating uterine artery (UA) dilation in pregnancy. Hydrogen sulfide (H2S) has been recently identified as a new UA vasodilator, yet the mechanism underlying H2S-induced UA dilation is unknown. Here, we tested whether H2S activated BKCa channels in human UA smooth muscle cells (hUASMC) to mediate UA relaxation. Multiple BKCa subunits were found in human UA in vitro and hUASMC in vitro, and high β1 and γ1 proteins were localized in SM cells in human UA. Baseline outward currents, recorded by whole-cell and single-channel patch clamps, were significantly inhibited by specific BKCa blockers iberiotoxin (IBTX) or tetraethylammonium, showing specific BKCa activity in hUASMC. H2S dose (NaHS, 1–1000 µM)-dependently potentiated BKCa currents and open probability. Co-incubation with a Ca2+ blocker nifedipine (5 µM) or a chelator (ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 5 mM) did not alter H2S-potentiated BKCa currents and open probability. NaHS also dose-dependently relaxed phenylephrine pre-constricted freshly prepared human UA rings, which was inhibited by IBTX. Thus, H2S stimulated human UA relaxation at least partially via activating SM BKCa channels independent of extracellular Ca2+.


1995 ◽  
Vol 268 (5) ◽  
pp. C1284-C1294 ◽  
Author(s):  
S. K. Tiwari-Woodruff ◽  
T. C. Cox

Entry of Ca2+ through Ca2+ channels is thought to trigger the acrosome reaction of spermatozoa during fertilization. Antagonists of the L-type Ca2+ channel are known to prevent the intracellular Ca2+ (Ca2+) increase and inhibit acrosomal exocytosis in mammalian sperm. Planar bilayer recordings were used to study Ca2- channels incorporated from partially purified boar sperm plasma membranes. With symmetrical 50 mM NaCl and 100 mM BaCl2 on the cis side, single-channel events consistent with Ba2+ flux from cis to trans were observed. These channels were activated by the dihydropyridine agonist (+/-)BAY K 8644 and blocked by the antagonist nitrendipine. Sperm Ca2- channels did not require depolarization for activation and did not inactivate. The (+/-)BAY K 8644 and (S-)BAY K 8644 enantiomers increased apparent open time in a dose-dependent [half-maximal activity constant (K0.5) = 0.9 and 0.3 microM, respectively] manner. Dihydropyridine antagonists nitrendipine (K0.5 = 0.5 microM) and (R+)BAY K 8644 (K0.5 = 2.8 microM) decreased apparent open times. The channels described in this report share some properties with brain, cardiac, and skeletal muscle t tubule Ca2+ channels and may be involved in increasing Cai2+ before the acrosome reaction.


1985 ◽  
Vol 249 (1) ◽  
pp. C177-C179 ◽  
Author(s):  
Y. Oosawa ◽  
M. Sokabe

A single cation channel from Tetrahymena cilia was incorporated into planar lipid bilayers. This channel selected for K+, Na+, and Li+ over Cl- and gluconate-, and its single channel conductance (at +25 mV) was 211 +/- 8 pS (mean +/- SE) in 100 mM K+-gluconate. The channel was not voltage dependent and may contribute to the resting K+ conductance of ciliary membrane.


1996 ◽  
Vol 108 (1) ◽  
pp. 49-65 ◽  
Author(s):  
M S Awayda ◽  
I I Ismailov ◽  
B K Berdiev ◽  
C M Fuller ◽  
D J Benos

We examined the regulation of a cloned epithelial Na+ channel (alpha beta gamma-rENaC) by protein kinase A (PKA) and protein kinase C (PKC). Experiments were performed in Xenopus oocytes and in planar lipid bilayers. At a holding potential of -100 mV, amiloride-sensitive current averaged -1,279 +/- 111 nA (n = 7) in alpha beta gamma-rENaC-expressing oocytes. Currents in water-injected oocytes were essentially unresponsive to 10 microM amiloride. A 1-h stimulation of PKC with 100 nM of PMA inhibited whole-cell currents in Xenopus oocytes to 17.1 +/- 1.8, and 22.1 +/- 2.6% of control (n = 7), at holding potentials of -100 and +40 mV, respectively. Direct injection of purified PKC resulted in similar inhibition to that observed with PMA. Additionally, the inactive phorbol ester, phorbol-12-myristate-13-acetate, 4-O-methyl, was without effect on alpha beta gamma-rENaC currents. Pretreatment with the microtubule inhibitor colchicine (100 microM) did not modify the inhibitory effect of PMA; however, pretreatment with 20 microM cytochalasin B decreased the inhibitory action of PMA to &lt; 20% of that previously observed. In vitro-synthesized alpha beta gamma-rENaC formed an amiloride-sensitive Na(+)-selective channel when incorporated into planar lipid bilayers. Addition of PKC, diacyl-glycerol, and Mg-ATP to the side opposite that which amiloride blocked, decreased the channel's open probability (Po) from 0.44 +/- 0.06 to 0.13 +/- 0.03 (n = 9). To study the effects of PKA on alpha beta gamma-rENaC expressed in Xenopus oocytes, cAMP levels were elevated with 10 microM forskolin and 1 mM isobutyl-methyl-xanthine. This cAMP-elevating cocktail did not cause any stimulation of alpha beta gamma-rENaC currents in either the inward or outward directions. This lack of activation was also observed in oocytes preinhibited with PMA and in oocytes pretreated with cytochalasin B and PMA. Neither alpha-rENaC nor alpha beta gamma-rENaC incorporated into planar lipid bilayers could be activated with PKA and Mg-ATP added to either side of the membrane, as Po remained at 0.63 +/- 0.06 (n = 7) and 0.45 +/- 0.05 (n = 9), respectively. We conclude that: alpha beta gamma-rENaC is inhibited by PKC, and that alpha beta gamma-rENaC is not activated by PKA.


Sign in / Sign up

Export Citation Format

Share Document