scholarly journals Analyses of apoptosis and DNA damage in bovine cumulus cells afterin vitromaturation with different copper concentrations: consequences on early embryo development

Zygote ◽  
2016 ◽  
Vol 24 (6) ◽  
pp. 869-879 ◽  
Author(s):  
D.E. Rosa ◽  
J.M. Anchordoquy ◽  
J.P. Anchordoquy ◽  
M.A. Sirini ◽  
J.A. Testa ◽  
...  

SummaryThe aim of this study was to investigate the influence of copper (Cu) duringin vitromaturation (IVM) on apoptosis and DNA integrity of cumulus cells (CC); and oocyte viability. Also, the role of CC in the transport of Cu during IVM was evaluated on oocyte developmental capacity. Damage of DNA was higher in CC matured without Cu (0 µg/dl Cu,P< 0.01) with respect to cells treated with Cu for cumulus–oocyte complexes (COCs) exposed to 0, 20, 40, or 60 µg/dl Cu). The percentage of apoptotic cells was higher in CC matured without Cu than in CC matured with Cu. Cumulus expansion and viability of CC did not show differences in COC treated with 0, 20, 40, or 60 µg/dl Cu during IVM. Afterin vitrofertilization (IVF), cleavage rates were higher in COC and DO + CC (denuded oocytes + CC) with or without Cu than in DO. Independently of CC presence (COC, DO + CC or DO) the blastocyst rates were higher when 60 µg/dl Cu was added to IVM medium compared to medium alone. These results indicate that Cu supplementation to IVM medium: (i) decreased DNA damage and apoptosis in CC; (ii) did not modify oocyte viability and cumulus expansion; and (iii) improved subsequent embryo development up to blastocyst stage regardless of CC presence during IVM.

Zygote ◽  
2017 ◽  
Vol 25 (5) ◽  
pp. 601-611 ◽  
Author(s):  
Matias A. Sirini ◽  
Juan Mateo Anchordoquy ◽  
Juan Patricio Anchordoquy ◽  
Ana M. Pascua ◽  
Noelia Nikoloff ◽  
...  

SummaryThe aim of this study was to investigate the effects of acylated ghrelin supplementation duringin vitromaturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus–oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. Thein vitroeffects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alma López ◽  
Miguel Betancourt ◽  
Yvonne Ducolomb ◽  
Juan José Rodríguez ◽  
Eduardo Casas ◽  
...  

Abstract Background The evaluation of the DNA damage generated in cumulus cells after mature cumulus-oocyte complexes vitrification can be considered as an indicator of oocyte quality since these cells play important roles in oocyte developmental competence. Therefore, the aim of this study was to determine if matured cumulus-oocyte complexes exposure to cryoprotectants (CPAs) or vitrification affects oocytes and cumulus cells viability, but also if DNA damage is generated in cumulus cells, affecting fertilization and embryo development. Results The DNA damage in cumulus cells was measured using the alkaline comet assay and expressed as Comet Tail Length (CTL) and Olive Tail Moment (OTM). Results demonstrate that oocyte exposure to CPAs or vitrification reduced oocyte (75.5 ± 3.69%, Toxicity; 66.7 ± 4.57%, Vitrification) and cumulus cells viability (32.7 ± 5.85%, Toxicity; 7.7 ± 2.21%, Vitrification) compared to control (95.5 ± 4.04%, oocytes; 89 ± 4.24%, cumulus cells). Also, significantly higher DNA damage expressed as OTM was generated in the cumulus cells after exposure to CPAs and vitrification (39 ± 17.41, 33.6 ± 16.69, respectively) compared to control (7.4 ± 4.22). In addition, fertilization and embryo development rates also decreased after exposure to CPAs (35.3 ± 16.65%, 22.6 ± 3.05%, respectively) and vitrification (32.3 ± 9.29%, 20 ± 1%, respectively). It was also found that fertilization and embryo development rates in granulose-intact oocytes were significantly higher compared to denuded oocytes in the control groups. However, a decline in embryo development to the blastocyst stage was observed after CPAs exposure (1.66 ± 0.57%) or vitrification (2 ± 1%) compared to control (22.3 ± 2.51%). This could be attributed to the reduction in both cell types viability, and the generation of DNA damage in the cumulus cells. Conclusion This study demonstrates that oocyte exposure to CPAs or vitrification reduced viability in oocytes and cumulus cells, and generated DNA damage in the cumulus cells, affecting fertilization and embryo development rates. These findings will allow to understand some of the mechanisms of oocyte damage after vitrification that compromise their developmental capacity, as well as the search for new vitrification strategies to increase fertilization and embryo development rates by preserving the integrity of the cumulus cells.


Zygote ◽  
2015 ◽  
Vol 24 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Juan Patricio Anchordoquy ◽  
Juan Mateo Anchordoquy ◽  
Matias Angel Sirini ◽  
Juan Alberto Testa ◽  
Pilar Peral-García ◽  
...  

SummaryAdequate dietary intake of manganese (Mn) is required for normal reproductive performance in cattle. This study was carried out to investigate the effect of Mn duringin vitromaturation of bovine cumulus–oocyte complexes (COC) on apoptosis of cumulus cells, cumulus expansion, and superoxide dismutase (SOD) activity in the COC. The role of cumulus cells on Mn transport and subsequent embryo development was also evaluated. Early apoptosis decreased in cumulus cells matured with Mn compared with medium alone. Cumulus expansion did not show differences in COC matured with or without Mn supplementation. SOD activity was higher in COC matured with 6 ng/ml Mn than with 0 ng/ml Mn. Cleavage rates were higher in COC and denuded oocytes co-cultured with cumulus cells, either with or without Mn added toin vitromaturation (IVM) medium. Regardless of the presence of cumulus cells during IVM, the blastocyst rates were higher when 6 ng/ml Mn was supplemented into IVM medium compared with growth in medium alone. Blastocyst quality was enhanced when COC were matured in medium with Mn supplementation. The results of the present study indicated that Mn supplementation to IVM medium enhanced the ‘health’ of COC, and improved subsequent embryo development and embryo quality.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Á Martíne. Moro ◽  
I Lamas-Toranzo ◽  
L González-Brusi ◽  
A Pérez-Gómez ◽  
P Bermejo-Álvarez

Abstract Study question Does cumulus cell mtDNA content correlate with oocyte developmental potential in the bovine model? Summary answer The relative amount of mtDNA content did not vary significantly in oocytes showing different developmental outcomes following IVF What is known already Cumulus cells are closely connected to the oocyte through transzonal projections, serving essential metabolic functions during folliculogenesis. These oocyte-supporting cells are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Previous studies have positively associated oocytés mtDNA content with developmental potential in both animal models and women. However, it remains debatable whether mtDNA content in cumulus cells could be used as a proxy to infer oocyte developmental potential. Study design, size, duration Bovine cumulus cells were allocated into three groups according to the developmental potential of the oocyte: 1) oocytes developing to blastocysts following IVF (Bl+Cl+), 2) oocytes cleaving following IVF but arresting their development prior to the blastocyst stage (Bl-Cl+), and 3) oocytes not cleaving following IVF (Bl-Cl-). Relative mtDNA content was analysed in 40 samples/group, each composed by the cumulus cells from one cumulus-oocyte complex (COC). Participants/materials, setting, methods Bovine cumulus-oocyte complexes were obtained from slaughtered cattle and individually matured in vitro (IVM). Following IVM, cumulus cells were removed by hyaluronidase treatment, pelleted, snap frozen in liquid nitrogen and stored at –80 ºC until analysis. Cumulus-free oocytes were fertilized and cultured in vitro individually and development was recorded for each oocyte. Relative mtDNA abundance was determined by qPCR, amplifying a mtDNA sequence (COX1) and a chromosomal sequence (PPIA). Statistical differences were tested by ANOVA. Main results and the role of chance Relative mtDNA abundance did not differ significantly (ANOVA p &gt; 0.05) between the three groups exhibiting different developmental potential (1±0.06 vs. 1.19±0.05 vs. 1.11±0.05, for Bl+Cl+ vs. Bl-Cl+ vs. Bl-Cl-, mean±s.e.m.). Limitations, reasons for caution Experiments were conducted in the bovine model. Although bovine folliculogenesis, monoovulatory ovulation and early embryo development exhibit considerable similarities with that of humans, caution should be taken when extrapolating these data to humans. Wider implications of the findings: The use of molecular markers for oocyte developmental potential in cumulus cells could be used to enhance success rates following single-embryo transfer. Unfortunately, mtDNA in cumulus cells was not found to be a good proxy for oocyte quality. Trial registration number Not applicable


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Muñoa ◽  
M Araolaza-Lasa ◽  
I Urizar-Arenaza ◽  
M Gianzo Citores ◽  
N Subiran Ciudad

Abstract Study question To elucidate if morphine can alter embryo development. Summary answer Chronic morphine treatment regulates BMP4 growth factor, in terms of gene expression and H3K27me3 enrichment and promotes in-vitro blastocysts development and PGC formation. What is known already BMP4 is a member of the bone morphogenetic protein family, which acts mainly through SMAD dependent pathway, to play an important role in early embryo development. Indeed, BMP4 enhances pluripotency in mouse embryonic stem cells (mESCs) and, specifically, is involved in blastocysts formation and primordial germ cells (PGCs) generation. Although, external morphine influence has been previously reported on the early embryo development, focus on implantation and uterus function, there is a big concern in understanding how environmental factors can cause stable epigenetic changes, which could be maintained during development and lead to health problems. Study design, size, duration First, OCT4-reported mESCs were chronically treated with morphine during 24h, 10–5mM. After morphine removal, mESCs were collected for RNA-seq and H3K27me3 ChIP-seq study. To elucidate the role of morphine in early embryo development, two cell- embryos stage were chronically treated with morphine for 24h and in-vitro cultured up to the blastocyst stage in the absence of morphine. Furthermore, after morphine treatment mESCs were differentiated to PGCs, to elucidate the role of morphine in PGC differentiation. Participants/materials, setting, methods Transcriptomic analyses and H3K27me3 genome wide distribution were carried out by RNA-Sequencing and Chip-Sequencing respectively. Validations were performed by RNA-RT-qPCR and Chip-RT-qPCR. Main results and the role of chance Dynamic transcriptional analyses identified a total of 932 differentially expressed genes (DEGs) after morphine treatment on mESCs, providing strong evidence of a transcriptional epigenetic effect induced by morphine. High-throughput screening approaches showed up Bmp4 as one of the main morphine targets on mESCs. Morphine caused an up-regulation of Bmp4 gene expression together with a decrease of H3K27me3 enrichment at promoter level. However, no significant differences were observed on gene expression and H3K27me3 enrichment on BMP4 signaling pathway components (such as Smad1, Smad4, Smad5, Smad7, Prdm1 and Prmd14) after morphine treatment. On the other hand, the Bmp4 gene expression was also up-regulated in in-vitro morphine treated blastocyst and in-vitro morphine treated PGCs. These results were consistent with the increase in blastocyst rate and PGC transformation rate observed after morphine chronic treatment. Limitations, reasons for caution To perform the in-vitro analysis. Further studies are needed to describe the whole signaling pathways underlying BMP4 epigenetic regulation after morphine treatment. Wider implications of the findings: Our findings confirmed that mESCs and two-cell embryos are able to memorize morphine exposure and promote both blastocyst development and PGCs formation through potentially BMP4 epigenetic regulation. These results provide insights understanding how environmental factors can cause epigenetic changes during the embryo development, leading to alterations and producing health problems/diseases Trial registration number Not applicable


2007 ◽  
Vol 19 (1) ◽  
pp. 302 ◽  
Author(s):  
Y. Kato ◽  
M. Fukushima ◽  
A. Kenmotsu ◽  
K. Chikazawa ◽  
Y. Nagao

In assisted reproduction by ICSI, PVP has been successfully used to replicate the viscosity of sperm solution, thus facilitating the handling and immobilization of spermatozoa. Sperm is suspended in medium containing polyvinylpyrrolidone (PVP), then injected into the oocytes together with a small amount of the medium in ICSI. However the effects of PVP on sperm function and embryo development have not been investigated in detail. In the present study, we investigated the effects of PVP solution on sperm function and embryonic development. Frozen–thawed spermatozoa from a Japanese Black bull and immature COCs from slaughterhouse bovine ovaries were used for all experiments. In experiment 1, bovine sperm was cultured in SOF or SOF containing 10% PVP. For detection of sperm acrosomal and chromatin integrity, sperm cultured in each medium were stained by the triple staining method and acridine orange after 0, 15, 30, and 60 min of culture. In experiment 2, zygotes were injected with PVP solution and cultured in vitro; subsequent cleavage and development to blastocysts were examined. In experiment 3, zygote injected with PVP solution was fixed by 4% paraformaldehyde after 1–3 h of PVP injection. The location of PVP solution in zygote was observed. In experiment 4, two-cell embryos were microinjected with a solution of dextran conjugated with fluorescein (FITC-dextran) and cultured in vitro. The location of FITC-dextran in the embryo was examined. In experiment 1, acrosome reactions of the sperm were enhanced after 15 min of incubation in PVP solution (P &lt; 0.05), but chromatin integrity of the sperm was not influenced (P &gt; 0.05). In experiment 2, PVP suppressed the development of the zygote to 2-cell, morula and blastocyst (75.0%, 35.1%, and 26.3% vs. 61.3%, 20.2%, and 12.9% for control and PVP group, respectively, P &lt; 0.05). In experiment 3, the locations of PVP solution in the zygote were observed 1–3 h after injection. In experiment 4, FITC-dextran was observed in ICM at the blastocyst stage. These findings suggest that PVP affects the acrosome but not the chromatin of sperm in ICSI. PVP solution exists locally in embryos injected and affects the developmental capacity of the embryos.


2008 ◽  
Vol 20 (1) ◽  
pp. 177
Author(s):  
P. Bermejo-Álvarez ◽  
A. Gutiérrez-Adán ◽  
P. Lonergan ◽  
D. Rizos

The faster-developing blastocysts in IVC systems are generally considered more viable and better able to survive following cryopreservation or embryo transfer than those that develop more slowly. However, evidence from several species indicates that embryos that reach the blastocyst stage earliest are more likely to be males than females. The aim of this study was to determine whether the duration of maturation could affect early embryo development and, furthermore, the sex ratio of early- or late-cleaved embryos and blastocysts. Cumulus–oocyte complexes were matured in vitro for 16 h (n = 2198) or 24 h (n = 2204). Following IVF, presumptive zygotes from each group were examined every 4 h between 24 and 48 h postinsemination (hpi) for cleavage, and all embryos were cultured to Day 8 in synthetic oviduct fluid to assess blastocyst development. Two-cell embryos at each time point and blastocysts on Days 6, 7, and 8 from both groups were snap-frozen individually for sexing. Sexing was performed with a single PCR using a specific primer BRY. There was a significantly lower number of cleaved embryos from the 16-h compared with the 24-h maturation group at 28 (10.0 � 1.51 v. 28.8 � 3.57%), 32 (35.3 � 1.48 v. 57.6 � 3.33%), 36 (54.8 � 1.76 v. 67.4 � 2.81%), 40 (63.3 � 1.82 v. 72.0 � 2.54%), and 48 (70.6 � 1.78 v. 77.1 � 2.18%) hpi, respectively (mean � SEM; P d 0.05). However, the blastocyst yields on Day 6 (17.1 � 3.11 v. 16.4 � 2.11%), 7 (30.6 � 4.10 v. 34.6 � 3.51%), or 8 (34.1 � 3.90 v. 39.4 � 4.26%) were similar for both groups (mean � SEM; 16 v. 24 h, respectively). Significantly more 2-cell early cleaved embryos (up to 32 hpi) were male compared with the expected 1:1 ratio from both groups (16 h: 1.24:0.76 v. 24 h: 1.17:0.83, P ≤ 0.05); however, the overall sex ratio among 2-cell embryos was significantly different from the expected 1:1 in favor of males only for the 16-h group (1.18:0.82, P ≤ 0.05). The sex ratio of blastocysts on Day 6, 7, or 8 from both groups was not different from the expected 1:1. However, the total number of male blastocysts obtained after 8 days of culture from the 24-h group was significantly different from the expected 1:1 (1.19:0.81, P ≤ 0.05) and approached significance in the 16-h group. These results show that the maturational stage of the oocyte at the time of fertilization has an effect on the kinetics of early cleavage divisions but not on blastocyst yield. Furthermore, irrespective of the duration of maturation, the sex ratio of early-cleaving 2-cell embryos was weighted in favor of males, and this observation was maintained at the blastocyst stage.


2014 ◽  
Vol 26 (1) ◽  
pp. 198
Author(s):  
E. Daly ◽  
A. G. Fahey ◽  
M. M. Herlihy ◽  
T. Fair

We have previously demonstrated the importance of progesterone (P4) synthesis by cumulus cells during oocyte maturation in vitro (IVM) for bovine oocyte acquisition of developmental competence and subsequent embryo development (Aparicio et al. 2011 Biol. Reprod. 84). The aim of this study was to identify key processes that may be deregulated by the inhibition of P4 signalling in the cumulus–oocyte complex (COC) during IVM. To this end, good quality immature COC were placed in IVM medium [TCM-199 supplemented with 10% (vol/vol) FCS and 10 ng mL–1 epidermal growth factor] and cultured at 39°C for 22 h in a humidified atmosphere containing 5% CO2, in the presence or absence of 10 μM trilostane (which blocks P4 synthesis by inhibiting 3 β-hydroxysteroid dehydrogenase; Stegram Pharmaceuticals Ltd., Surrey, UK). Matured COC were washed and placed in 250 μL of fertilization medium (25 mM bicarbonate, 22 mM Na-lactate, 1 mM Na-pyruvate, 6 mg mL–1 fatty acid-free BSA, and 10 mg mL–1 heparin). In vitro fertilization (IVF) was performed with 250 μL of frozen–thawed semen at a final concentration of 1 × 106 spermatozoa mL–1 at 39°C under 5% CO2 during 20 h. Presumptive zygotes were denuded, washed, and transferred to 25-μL culture droplets (SOF + 5% FCS) at 39°C under 5% CO2, 90% of N2, and 5% O2 atmosphere with maximum humidity. Subsets of presumptive fertilized eggs and developing embryos were recovered at 6, 72, 120, and 192 h postinsemination (hpi) and processed for confocal whole-mount immunocytochemistry. The meiotic and mitotic spindles and chromosomes were visualised by immunofluorescent labelling of α-tubulin and 4′,6-diamindino-2-phenylindole (DAPI), respectively, and classified as normal if the chromosomes were correctly aligned or appropriately segregated, or abnormal if lagging chromosomes or abnormal chromosome segregation were observed. Samples were collected from 5 replicates (n = 50 zygotes/embryos per treatment, per timepoint) and a total of 157 spindles were observed. Logistic regression analysis was conducted to determine the probability of abnormal spindle formation. The incidence of spindle abnormality was regressed on time, treatment, and treatment by time. For all time points, there was significant reduction in the odds of abnormal spindle formation in control samples versus trilostane-treated samples (P < 0.001). In conclusion, our data imply a role for P4 signalling in maintaining spindle integrity during oocyte meiotic maturation and progression through the initial mitotic divisions of early embryo development in cattle.


2018 ◽  
Vol 30 (1) ◽  
pp. 219
Author(s):  
C. De Canditiis ◽  
N. Pagano ◽  
V. Franco ◽  
I. Paradiso ◽  
É. C. Dos Santos ◽  
...  

There is a growing worldwide concern regarding the increased release of the heavy metal cadmium (Cd) in the environment, due to several industrial processes, as it is known to affect health. Among other heavy metals, Cd is widely recognised to influence the reproductive system at different levels, interfering with both gametes and embryo functions in several species (Thompson and Bannigan, 2008 Reprod. Toxicol. 25, 304-315). The in vitro model can be used to mimic environmental conditions allowing us to evaluate their effect on oocyte maturation and early embryo development. Therefore, the aim of this study was to evaluate the influence of different Cd concentrations on nuclear maturation, apoptosis in cumulus cells, and cleavage and blastocyst yields in cattle. For this purpose, abattoir-derived bovine oocytes were in vitro matured, fertilized, and cultured according to standard procedures (Rubessa et al. 2011 Theriogenology 76, 1347-1355). In particular, oocytes were matured with 0 (control; n = 126), 0.1 μM (n = 139), 1 μM (n = 134), and 10 μM of Cd (n = 135), at 39°C under humidified air with 5% CO2, 7% O2, and 88% N2. For each replicate, after 22 h of maturation, a representative sample of oocytes (n = 10 per each group) was used to evaluate nuclear maturation by 4′,6-diamidino-2-phenylindole (DAPI) staining and another sample (n = 10 per each group) to assess cumulus-cells complex apoptosis by TUNEL/Hoechst staining (Pocar et al. 2005 Reproduction 130, 857-868). The remaining oocytes were in vitro fertilized and cultured with 0 (n = 106), 0.1 μM (n = 119), 1 μM (n = 114), and 10 μM (n = 115) Cd. The experiment was repeated 3 times. On Day 8 post-IVF, the blastocyst yields were recorded. Differences among groups were analysed by ANOVA, with the least significant difference method used as a post hoc test. Data are presented as means ± SE. Unexpectedly, the exposure of oocytes to Cd during IVM did not affect the percentage of oocytes undergoing nuclear maturation (on average 96.3 ± 2.3). In contrast, concentrations of 1 and 10 μM Cd increased the percentage of apoptotic cumulus-cells in cumulus–oocyte complexes (COC) compared with the control (3.4 ± 0.4, 10.6 ± 1.8, 15.0 ± 0.9, 16.7 ± 4.0, respectively, with 0, 0.1, 1, and 10 μM; P < 0.05). It is worth pointing out that with the highest concentration, cumulus expansion did not occur and cumulus cells appeared detached from the oocyte. Likewise, 1 and 10 μM Cd decreased cleavage rates compared with the control (68.7 ± 1.8, 54.3 ± 5.0, 58.5 ± 4.2 and 2.8 ± 2.6, respectively, with 0, 0.1, 1, and 10 μM Cd; P < 0.01). Finally, blastocyst yields decreased when oocytes were treated with 0.1 μM Cd and no development to blastocyst was observed at the 2 higher concentrations (35.1 ± 1.7, 26.2 ± 3.1, 0, 0, respectively, with 0, 0.1, 1, and 10 μM; P < 0.01). In conclusion, exposure to Cd during maturation negatively affects bovine COC, as indicated by the increased apoptotic index in cumulus cells, without influencing the nuclear maturation process. Furthermore, the presence of Cd during in vitro fertilization and culture severely impairs both the fertilization and post-fertilization embryo development.


2013 ◽  
Vol 25 (1) ◽  
pp. 193
Author(s):  
J. Caudle ◽  
C. K. Hamilton ◽  
F. A. Ashkar ◽  
W. A. King

Sexual dimorphisms such as differences in growth rate and metabolism have been observed in the early embryo, suggesting that sex chromosome-linked gene expression may play an active role in early embryo development. Furthermore, in vitro sex ratios are often skewed toward males, indicating that Y-linked genes may benefit development. While little attention has been paid to the Y chromosome, expression of some Y-linked genes such as SRY and ZFY has been identified in the early embryo, and only a few studies have systematically examined early stages. Identification of transcripts of Y-linked genes in the early embryo may provide insights into male development and provide markers of embryonic genome activation in male embryos. The objectives of this study were i) to examine the timing of transcription of 2 Y chromosome-linked genes involved with sperm production and male development, ubiquitin-specific peptidase 9 (USP9Y) and zinc finger protein (ZFY), in in vitro-produced bovine embryos from the 2-cell stage to the blastocyst stage and ii) to determine if USP9Y and ZFY transcripts are present in in vitro-produced embryos arrested at the 2- to 8-cell stages. To examine the chronology of transcription of these genes, pools of 30 embryos for each developmental stage, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst, were produced by bovine standard in vitro embryo production (Ashkar et al. 2010 Hum. Reprod. 252, 334–344) using semen from a single bull. Pools of 30 were used to balance sex ratios and to account for naturally arresting embryos. Embryos for each developmental stage were harvested and snap frozen. Total RNA was extracted from each pool, reverse transcribed to cDNA and by using PCR, and transcripts of USP9Y and ZFY were detected as positive or negative. In addition pools of 30 embryos arrested at the 2- to 8-cell stage harvested 7 days after IVF were processed and analysed in the same way to determine if transcripts from the Y chromosomes are present in developmentally arrested embryos. Transcripts of USP9Y and ZFY were detected in the pooled embryos from the 8-cell stage through to the blastocyst stage, but none were detected in the 2-cell or 4-cell pools. Transcripts of ZFY were detected in the arrested 2- to 8-cell embryo pool, but transcripts of USP9Y were not detected. Given that these Y genes begin expression at the 8-cell stage, coincident with embryonic genome activation, it was concluded that these genes may be important for early male embryo development. Furthermore, the results suggest that arrested embryos that have stopped cleaving before the major activation of the embryonic genome are still capable of transcribing at least some of these genes. The absence of USP9Y transcripts in the arrested embryos suggests that it may be important for early male embryo development. Funding was provided by NSERC, the CRC program, and the OVC scholarship program.


Sign in / Sign up

Export Citation Format

Share Document